「ガイドポスト細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
33行目: 33行目:
 哺乳類においても、神経回路が形成される過程でさまざまなガイドポスト細胞が働くことが知られている。以下に代表的な例を紹介する。
 哺乳類においても、神経回路が形成される過程でさまざまなガイドポスト細胞が働くことが知られている。以下に代表的な例を紹介する。


=== corridor cells(内包のガイドポスト細胞) ===
=== corridor cells ===
[[image:ガイドポスト細胞_fig_3.png|350px|thumb|right|'''図2.マウス胚の大脳皮質、基底核原基、視床を含んだ脳断面の模式図'''<br>上が背側、左が側方。外側基底核原基とcorridor cellsなどの外側基底核原基に由来する組織をピンク色で、内側基底核原基と内側基底核原基に由来する組織を水色で、大脳皮質へ投射する視床の神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、外側基底核原基に由来するcorridor cellsが内側基底核原基の特定の領域へ侵入して帯状に配列する。胎生15日目胚になると、視床の神経軸索がcorridor cellsの配列に沿って内側基底核原基を通過し、大脳皮質へと伸長する。<br>(B)Mash-1を欠失したマウス胚;corridor cellsの配列が内側基底核原基に形成されず、視床の軸索は内側基底核原基を通過することが出来ない<ref name=ref4 />。]]
[[image:ガイドポスト細胞_fig_3.png|350px|thumb|right|'''図2.マウス胚の大脳皮質、基底核原基、視床を含んだ脳断面の模式図'''<br>上が背側、左が側方。外側基底核原基とcorridor cellsなどの外側基底核原基に由来する組織をピンク色で、内側基底核原基と内側基底核原基に由来する組織を水色で、大脳皮質へ投射する視床の神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、外側基底核原基に由来するcorridor cellsが内側基底核原基の特定の領域へ侵入して帯状に配列する。胎生15日目胚になると、視床の神経軸索がcorridor cellsの配列に沿って内側基底核原基を通過し、大脳皮質へと伸長する。<br>(B)Mash-1を欠失したマウス胚;corridor cellsの配列が内側基底核原基に形成されず、視床の軸索は内側基底核原基を通過することが出来ない<ref name=ref4 />。]]


 [[corridor cells]]は、[[大脳皮質]]へ投射する背側[[視床]](dorsal thalamus)の神経軸索が、途中の[[内側基底核原基]](MGE: medial ganglionic eminence)を通過するための足場として機能するガイドポスト細胞である('''図2''')。内側基底核原基の中に視床の軸索が通過するための回廊(corridor)のように配列することから名付けられた<ref name=ref4><pubmed> 16615895 </pubmed></ref>。
 [[corridor cells]]は、[[大脳皮質]]へ投射する背側[[視床]](dorsal thalamus)の神経軸索が、途中の[[内側基底核原基]](MGE: medial ganglionic eminence)を通過するための足場として機能するガイドポスト細胞である('''図2''')。


 corridor cellsは[[外側基底核原基]](LGE: lateral ganglionic eminence)に由来する[[GABA]]作動性の神経細胞である<ref name=ref4 />。
 内側基底核原基の中に視床の軸索が通過するための回廊(corridor)のように配列することから名付けられた<ref name=ref4><pubmed> 16615895 </pubmed></ref>。corridor cellsは[[外側基底核原基]](LGE: lateral ganglionic eminence)に由来する[[GABA]]作動性の神経細胞である<ref name=ref4 />。背側視床から大脳皮質へ投射する[[視床皮質路]](thalamocortical projection)の神経軸索は、途中の内側基底核原基を通過する際に特定の経路を伸長する。この経路には、視床の軸索が侵入する前に、近傍の外側基底核原基で生まれたcorridor cellsが移動してきて帯状に配列する。視床の軸索は軸索の束([[内包]]:internal capsule)を作りながらcorridor cellsの配列に沿って内側基底核原基を通過する<ref name=ref4 /><ref name=ref7><pubmed> 24742382 </pubmed></ref>。


 背側視床から大脳皮質へ投射する[[視床皮質路]](thalamocortical projection)の神経軸索は、途中の内側基底核原基を通過する際に特定の経路を伸長する。この経路には、視床の軸索が侵入する前に、近傍の外側基底核原基で生まれたcorridor cellsが移動してきて帯状に配列する。視床の軸索は軸索の束([[内包]]:internal capsule)を作りながらcorridor cellsの配列に沿って内側基底核原基を通過する<ref name=ref4 /><ref name=ref7><pubmed> 24742382 </pubmed></ref>。
 [[転写因子]][[Mash1]]を欠失したマウス胚では、corridor cellsが消失し、視床の軸索は内側基底核原基を正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚の外側基底核原基を移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索が内側基底核原基を通り抜けるようになる。これらの結果は、corridor cellsが内包を形成する視床軸索のガイドポスト細胞であり、corridor cellsの配列が視床軸索の内側基底核原基の通過に必要かつ十分な要素であることを示している<ref name=ref4 />。


 [[転写因子]]の[[Mash1]]を欠失したマウス胚では、corridor cellsが消失し、視床の軸索は内側基底核原基を正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚の外側基底核原基を移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索が内側基底核原基を通り抜けるようになる。この結果は、corridor cellsの配列が視床軸索の内側基底核原基の通過に必要かつ十分な要素であることを示している<ref name=ref4 />。また、corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子である[[ErbB4]]を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1とErbB4によるシグナルが関与している可能性が高い<ref name=ref4 />。
 corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子である[[ErbB4]]を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1とErbB4によるシグナルが関与している可能性が高い<ref name=ref4 />。


=== lot cells(外側嗅索のガイドポスト細胞) ===
=== lot cells ===
[[image:ガイドポスト細胞_fig_4.png|350px|thumb|right|'''図3.マウス胚の終脳を側面から見た模式図。左が脳の先端'''<br>lot細胞をピンク色で、嗅球の投射神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、lot細胞が終脳の表層に弧を描くように帯状に分布する。胎生14日目胚になると、lot細胞の配列の上を嗅球の神経軸索が伸長する。<br>(B)lot細胞を除去した場合;破線で囲った領域のlot細胞を薬剤で除去しておくと、嗅球の神経軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。]]
[[image:ガイドポスト細胞_fig_4.png|350px|thumb|right|'''図3.マウス胚の終脳を側面から見た模式図。左が脳の先端'''<br>lot細胞をピンク色で、嗅球の投射神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、lot細胞が終脳の表層に弧を描くように帯状に分布する。胎生14日目胚になると、lot細胞の配列の上を嗅球の神経軸索が伸長する。<br>(B)lot細胞を除去した場合;破線で囲った領域のlot細胞を薬剤で除去しておくと、嗅球の神経軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。]]


 [[lot細胞]](lot cells)は胚発生期の[[終脳]]表層に帯状に配列し、[[嗅球]]の投射神経細胞の軸索伸長をガイドするガイドポスト細胞である<ref><pubmed> 12486929 </pubmed></ref>('''図3''')。
 [[lot細胞]](lot cells)は胚発生期の[[終脳]]表層に帯状に配列し、[[嗅球]]の投射神経細胞の軸索伸長をガイドするガイドポスト細胞である<ref><pubmed> 12486929 </pubmed></ref>('''図3''')。


 lot細胞は[[代謝活性型グルタミン酸受容体1]] ([[mGluR1]])を認識する[[wj:モノクローナル抗体|モノクローナル抗体]]による染色パターンを手掛かりとして、マウス初期胚の[[終脳]]で見つかった<ref name=ref1><pubmed> 9742149 </pubmed></ref><ref><pubmed> 22539416 </pubmed></ref>。lot細胞は終脳の背側領域で早い時期に誕生し終脳表層を腹側接線方向へ移動する<ref><pubmed> 10908621 </pubmed></ref><ref name=ref2><pubmed> 16439477 </pubmed></ref><ref><pubmed> 18434520 </pubmed></ref>。このような発生様式に加えて、lot細胞は[[カハールレチウス細胞]]に特有な[[p73]]を発現することなどから、近年ではlot細胞をカハールレチウス細胞のサブグループに分類する考えもある<ref name=ref3><pubmed> 24403153 </pubmed></ref>。
 lot細胞は[[代謝活性型グルタミン酸受容体1]] ([[mGluR1]])を認識する[[wj:モノクローナル抗体|モノクローナル抗体]]による染色パターンを手掛かりとして、マウス初期胚の[[終脳]]で見つかった<ref name=ref1><pubmed> 9742149 </pubmed></ref><ref><pubmed> 22539416 </pubmed></ref>。lot細胞は終脳の背側領域で早い時期に誕生し終脳表層を腹側接線方向へ移動する<ref><pubmed> 10908621 </pubmed></ref><ref name=ref2><pubmed> 16439477 </pubmed></ref><ref><pubmed> 18434520 </pubmed></ref>。このような発生様式に加えて、lot細胞は[[カハールレチウス細胞]]に特有な[[p73]]を発現することなどから、近年ではlot細胞をカハールレチウス細胞のサブグループに分類する考えもある<ref name=ref3><pubmed> 24403153 </pubmed></ref>。嗅球の投射神経細胞は終脳表層の特定の領域に弧を描くように軸索を伸長する。この経路には、嗅球の軸索が伸長するよりも前にlot細胞が移動してきて帯状に配列する。嗅球の軸索は軸索の束([[外側嗅索]]:lateral olfactory tract)を作りながらlot細胞の配列に沿って終脳表層を伸長する<ref name=ref1 />。


 嗅球の投射神経細胞は終脳表層の特定の領域に弧を描くように軸索を伸ばして軸索の束([[外側嗅索]]:lateral olfactory tract)を作る。この軸索束が形成される領域には、軸索よりも先にlot細胞が帯状に配列する。lot細胞の配列と嗅球の軸索伸長は、マウス胚から終脳だけを取り出して培養しても再現することが出来る<ref><pubmed> 8821172 </pubmed></ref><ref name=ref1 />。薬剤を用いてlot細胞を部分的に除去した終脳を培養すると、嗅球の軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />
 lot細胞の配列と嗅球の軸索伸長は、マウス胚から終脳だけを取り出して培養しても再現することが出来る<ref><pubmed> 8821172 </pubmed></ref><ref name=ref1 />。薬剤を用いてlot細胞を部分的に除去した終脳を培養すると、嗅球の軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。軸索ガイダンスシグナルとして有名な[[ネトリン-1]]/[[DCC]]シグナルを欠失したマウス胚ではlot細胞の配列が部分的に失われるが、このlot細胞を欠く領域には嗅球の軸索が侵入しない<ref name=ref2 />。転写因子の[[Lhx2]]を欠失したマウス胚では、lot細胞の分布パターンと嗅球から終脳への軸索投射が大きく乱れる。正常なマウス胚の嗅球とLhx2を欠失したマウス胚の終脳を組み合わせて培養しても嗅球から終脳への軸索伸長は異常なままだが、Lhx2を欠失したマウス胚の嗅球と正常なマウス胚の終脳を組み合わせて培養すると、嗅球の軸索はlot細胞が配列した終脳の正しい場所を伸長する<ref><pubmed> 17329426 </pubmed></ref>。転写因子の[[Neurog1]]と[[Neurog2]]を両方欠失したマウス胚では、lot細胞の数が著しく減少するとともに、嗅球から終脳への軸索投射も失われる<ref name=ref3 />。これらの結果は、lot細胞が外側嗅索を形成する嗅球軸索のガイドポスト細胞であり、lot細胞の配列が嗅球から終脳への正常な軸索投射に必要であることを示している。


 軸索ガイダンスシグナルとして有名な[[ネトリン-1]]/[[DCC]]シグナルを欠失したマウス胚ではlot細胞の配列が部分的に失われるが、このlot細胞を欠く領域には嗅球の軸索が侵入しない<ref name=ref2 />。
=== 脳梁のガイドポスト細胞 ===


 転写因子の[[Lhx2]]を欠失したマウス胚では、lot細胞の分布パターンと嗅球から終脳への軸索投射が大きく乱れる。正常なマウス胚の嗅球とLhx2を欠失したマウス胚の終脳を組み合わせて培養しても嗅球から終脳への軸索伸長は異常なままだが、Lhx2を欠失したマウス胚の嗅球と正常なマウス胚の終脳を組み合わせて培養すると、嗅球の軸索はlot細胞が配列した終脳の正しい場所を伸長する<ref><pubmed> 17329426 </pubmed></ref>。
 大脳皮質の左右をつなぐ交連性神経細胞の軸索は、終脳背側正中部の特定の領域を通過して軸索の束([[脳梁]]:corpus callosum)を形成する。脳梁ができる領域には、交連性神経細胞の軸索が通過するよりも前に、近隣の大脳皮質の[[脳室下帯]](subventricular zone)で生じた神経細胞が正中部を左右に貫くように帯状に配列して[[glial sling]]と呼ばれる構造を形成する。交連性神経細胞の軸索はglial slingに沿って脳の正中を通過し、反対側の大脳皮質へと投射する<ref><pubmed> 12756176 </pubmed></ref>。
 
 転写因子の[[Neurog1]]と[[Neurog2]]を両方欠失したマウス胚では、lot細胞の数が著しく減少するとともに、嗅球から終脳への軸索投射も失われる<ref name=ref3 />。
 
 これらの結果は、lot細胞の配列が嗅球から終脳への正常な軸索投射に必要であることを示している。
 
=== 脳梁のガイドポスト細胞 ===
 大脳皮質の左右をつなぐ交連性神経細胞の軸索は、終脳背側正中部の特定の領域を通過して軸索の束([[脳梁]]:corpus callosum)を形成する。脳梁ができる領域には、交連性神経細胞の軸索が通過するよりも前に、近隣の大脳皮質の[[脳室下帯]](subventricular zone)で生じた神経細胞が正中部を貫くように帯状に配列して[[glial sling]]と呼ばれる構造を形成する。交連性神経細胞の軸索はglial slingに沿って脳の正中を通過し、反対側の大脳皮質へと投射する<ref><pubmed> 12756176 </pubmed></ref>。


 転写因子の[[Nfia]]を欠失したマウス胚ではglial slingを形成するはずの神経細胞が正中領域ではなく、[[中隔野]](septum)へと異所的に移動してしまうためにglial slingが形成されず、脳梁も形成されない<ref><pubmed> 12514217 </pubmed></ref>。生後しばらくするとglial slingの構造は消失する。
 転写因子の[[Nfia]]を欠失したマウス胚ではglial slingを形成するはずの神経細胞が正中領域ではなく、[[中隔野]](septum)へと異所的に移動してしまうためにglial slingが形成されず、脳梁も形成されない<ref><pubmed> 12514217 </pubmed></ref>。生後しばらくするとglial slingの構造は消失する。
77行目: 70行目:


=== サブプレート細胞 ===
=== サブプレート細胞 ===
'''視床軸索による大脳皮質投射のガイドポスト細胞'''
 大脳皮質が形成される過程で[[皮質板]](cortical plate)の深層側に位置する[[サブプレート]] (subplate)には、発生の早い時期に誕生する神経細胞が一過的に分布する。これらサブプレートの神経細胞は視床から伸長してきた神経軸索に対して、皮質板への投射を一時的に待機(waiting period)させるように働く。
 大脳皮質が形成される過程で[[皮質板]](cortical plate)の深層側に位置する[[サブプレート]] (subplate)には、発生の早い時期に誕生する神経細胞が一過的に分布する。これらサブプレートの神経細胞は視床から伸長してきた神経軸索に対して、皮質板への投射を一時的に待機(waiting period)させるように働く。


 前述したように、大脳皮質へ投射する視床の神経軸索はcorridor cells にガイドされて内側基底核原基を通過する(図2)<ref name=ref4 />。その後、視床の軸索は大脳皮質の深層に位置するサブプレートに到達するが、軸索の最終的なターゲットである皮質板が成熟するまでは、皮質板には投射せずにサブプレート内に留まる<ref name=ref7 />。サブプレートの神経細胞を除去すると、視床の軸索は皮質板が成熟する前に投射を開始してしまい、正常な投射ができなくなる<ref><pubmed> 2395469 </pubmed></ref><ref><pubmed> 8325233 </pubmed></ref>。正常な発生過程においては、皮質板が成熟するとサブプレートの神経細胞は[[細胞死]]を引き起こして消失し、視床の軸索は大脳皮質への投射を再開する。
 前述したように、大脳皮質へ投射する視床の神経軸索はcorridor cells にガイドされて内側基底核原基を通過する(図2)<ref name=ref4 />。その後、視床の軸索は大脳皮質の深層に位置するサブプレートに到達するが、軸索の最終的なターゲットである皮質板が成熟するまでは、皮質板には投射せずにサブプレート内に留まる<ref name=ref7 />。サブプレートの神経細胞を除去すると、視床の軸索は本来の投射先以外の皮質領域へと投射してしまうなど、正常な投射ができなくなる<ref><pubmed> 2395469 </pubmed></ref><ref><pubmed> 8325233 </pubmed></ref>


==関連項目==
==関連項目==
38

回編集

案内メニュー