16,040
回編集
細 (→細胞膜への取り込み) |
|||
125行目: | 125行目: | ||
神経活動依存的にPLA2を介するアラキドン酸遊離が誘導されることも示唆されている。[<sup>14</sup>C]標識アラキドン酸を用いた実験では、ラットの[[大脳皮質]]や[[線条体]]でのアラキドン酸の取り込みが[[ドパミン]][[D2受容体]]の[[アゴニスト]]投与により亢進する<ref name=Basselin2012><pubmed>22178644</pubmed></ref> 。また、[<sup>3</sup>H]標識アラキドン酸を用いた実験では、線条体の[[初代培養]]神経細胞におけるアラキドン酸の遊離が[[NMDA型グルタミン酸受容体]]の活性化により促進すること<ref name=Dumuis1988><pubmed>2847054</pubmed></ref> 、その促進がPLA2を阻害するmepacrine(quinacrine)により阻害されることが示された<ref name=Tapia-Arancibia1992><pubmed>1355446</pubmed></ref> 。さらに、[[小脳]][[プルキンエ細胞]]の[[シナプス]][[長期抑制]](long-term depression; LTD)はcPLA2α欠損マウスで消失し、この異常がアラキドン酸やその生理活性代謝物である[[プロスタグランジンD2]]、[[プロスタグランジンE2|E2]]の補充により回復することも示されている<ref name=Le2010><pubmed>20133605</pubmed></ref> 。 | 神経活動依存的にPLA2を介するアラキドン酸遊離が誘導されることも示唆されている。[<sup>14</sup>C]標識アラキドン酸を用いた実験では、ラットの[[大脳皮質]]や[[線条体]]でのアラキドン酸の取り込みが[[ドパミン]][[D2受容体]]の[[アゴニスト]]投与により亢進する<ref name=Basselin2012><pubmed>22178644</pubmed></ref> 。また、[<sup>3</sup>H]標識アラキドン酸を用いた実験では、線条体の[[初代培養]]神経細胞におけるアラキドン酸の遊離が[[NMDA型グルタミン酸受容体]]の活性化により促進すること<ref name=Dumuis1988><pubmed>2847054</pubmed></ref> 、その促進がPLA2を阻害するmepacrine(quinacrine)により阻害されることが示された<ref name=Tapia-Arancibia1992><pubmed>1355446</pubmed></ref> 。さらに、[[小脳]][[プルキンエ細胞]]の[[シナプス]][[長期抑制]](long-term depression; LTD)はcPLA2α欠損マウスで消失し、この異常がアラキドン酸やその生理活性代謝物である[[プロスタグランジンD2]]、[[プロスタグランジンE2|E2]]の補充により回復することも示されている<ref name=Le2010><pubmed>20133605</pubmed></ref> 。 | ||
[[ファイル:Furuyashiki Fig 3.png|サムネイル| '''図3 エンドカナビノイドの代謝による遊離アラキドン酸の産生''']] | |||
=== エンドカナビノイドの代謝による遊離アラキドン酸の産生 === | === エンドカナビノイドの代謝による遊離アラキドン酸の産生 === | ||
近年、脳、肝臓、肺では、LPSの全身性投与による遊離アラキドン酸の上昇はcPLA2α欠損マウスでも大きな影響を受けず、[[モノアシルグリセロールリパーゼ]](monoacylglycerol lipase; MGL)の遺伝子欠損マウスや阻害薬投与により消失することも示された<ref name=Nomura2011><pubmed>22021672</pubmed></ref> 。この結果は、これらの臓器では主にエンドカナビノイドの一種である2- | 近年、脳、肝臓、肺では、LPSの全身性投与による遊離アラキドン酸の上昇はcPLA2α欠損マウスでも大きな影響を受けず、[[モノアシルグリセロールリパーゼ]](monoacylglycerol lipase; MGL)の遺伝子欠損マウスや阻害薬投与により消失することも示された<ref name=Nomura2011><pubmed>22021672</pubmed></ref> 。この結果は、これらの臓器では主にエンドカナビノイドの一種である2-AGがMGLにより代謝されて遊離アラキドン酸を生ずることを示唆する。 | ||
2-AGはシナプス活動に伴う細胞内のCa<sup>2+</sup>濃度上昇によりシナプス後部で産生され、[[シナプス前部]]の[[カンナビノイド受容体]][[CB1]]に作用して、逆行性にシナプス伝達を抑制する<ref name=Kano2014><pubmed>25169670</pubmed></ref> 。2-AGは、主にsn-2位にアラキドン酸を含むホスファチジルイノシトール(phosphatidylinositol)が[[ホスホリパーゼC]](phospholipase C; PLC)によりジアシルグリセロールに代謝され、さらにDAGが[[ジアシルグリセロールリパーゼ]](diacylglycerol lipase; DGL)により代謝されて生ずると考えられている<ref name=DiMarzo2015><pubmed>25524120</pubmed></ref><ref name=Wang2009><pubmed>19126434</pubmed></ref><ref name=Blankman2013><pubmed>23512546</pubmed></ref><ref name=Piomelli2014><pubmed>23954677</pubmed></ref>('''図3''') 。 | |||
遊離アラキドン酸はもう一つのエンドカンナビノイドであるアナンダマイド(anandamide; arachidonoylethanolamide)からも産生される。アナンダマイドは、主にsn-2位にアラキドン酸を含む[[ホスファチジルエタノラミン]]が[[N-アシルトランスフェラーゼ]]により[[N-アラキドノイルホスファチジルエタノラミン]](N-arachidonoyl phosphatidylethanolamine)に代謝され、さらに[[ホスホリパーゼD]](phospholipase D)により代謝されて生ずると考えられている。アナンダマイドは[[脂肪酸アミド加水分解酵素]](fatty acid amide hydrolase; FAAH)によって代謝されて遊離アラキドン酸を生ずる<ref name=DiMarzo2015><pubmed>25524120</pubmed></ref><ref name=Wang2009><pubmed>19126434</pubmed></ref><ref name=Blankman2013><pubmed>23512546</pubmed></ref><ref name=Piomelli2014><pubmed>23954677</pubmed></ref> 。 | 遊離アラキドン酸はもう一つのエンドカンナビノイドであるアナンダマイド(anandamide; arachidonoylethanolamide)からも産生される。アナンダマイドは、主にsn-2位にアラキドン酸を含む[[ホスファチジルエタノラミン]]が[[N-アシルトランスフェラーゼ]]により[[N-アラキドノイルホスファチジルエタノラミン]](N-arachidonoyl phosphatidylethanolamine)に代謝され、さらに[[ホスホリパーゼD]](phospholipase D)により代謝されて生ずると考えられている。アナンダマイドは[[脂肪酸アミド加水分解酵素]](fatty acid amide hydrolase; FAAH)によって代謝されて遊離アラキドン酸を生ずる<ref name=DiMarzo2015><pubmed>25524120</pubmed></ref><ref name=Wang2009><pubmed>19126434</pubmed></ref><ref name=Blankman2013><pubmed>23512546</pubmed></ref><ref name=Piomelli2014><pubmed>23954677</pubmed></ref> 。 |