グリア細胞株由来神経栄養因子
若松 義雄
東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野
DOI:10.14931/bsd.1173 原稿受付日:2012年5月1日 原稿完成日:2012年7月5日
担当編集委員:大隅 典子(東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)
英語名:glial cell line derived neurotrophic factor 英語略称名:GDNF 仏:facteur neurotrophe dérivé de la glie
GDNFはパーキンソン病患者におけるドーパミン産生ニューロンの細胞死を防ぐ因子を探索する過程で、ラットのグリア系細胞株B49から分泌される、ドーパミン産生ニューロンの生存や形態的分化、ドーパミン取り込みを促進するタンパク質として同定された[1]。構造的にはTGF-βスーパーファミリーに属する。その後、様々なニューロンに対して栄養因子として働くことや、ヒルシュスプルング病の原因遺伝子の一つであることなど、多様な機能とそれに対応した様々な病態との関連が指摘されている。
目次
シグナル伝達
細胞膜にGPIアンカーで結合している受容体GDNF family receptor α-1 (GFRα-1)が、主なGDNF受容体である。GFRαには4種類が知られており、GDNFは GFRα-2にも結合活性があるようで、基本的にはneurturin等のリガンドと各受容体が1対1で対応しているが、ある程度の交差性がある。GDNFのホモ2量体が結合したGFRα-1はさらに膜貫通型受容体チロシンキナーゼのRETタンパク質と相互作用して、これを活性化する(GFRα-1とRETが先にヘテロ4量体を形成しており、そこにGDNFが結合するという説もある)。活性化されたRETは、受容体チロシンキナーゼに一般的に見られるように、自己リン酸化とそれに続く様々なタンパク質の結合を経てホスファチジルイノシトール3キナーゼ (PI3K)-Akt経路や分裂促進因子活性化タンパク質キナーゼ (MAPK)経路など複数のシグナル伝達経路を活性化する。RET単独では細胞死誘導活性があることから、これらのシグナル伝達経路の活性化がGDNFによるニューロンの生存活性をになっているものと考えられる。一方、RETを介さないGDNF-GFRαシグナルの存在も示唆されている。この場合、Srcファミリーキナーゼ やホスホリパーゼCγ の活性化を経て、c-fos遺伝子の転写の活性化やRETを発現していないニューロンの生存を促進するという。
神経発生における機能と活性
細胞死の抑制
GDNFがもともと培養された中脳腹側のドーパミンニューロンにたいする栄養因子活性物質として同定されたことからもわかるように、GDNF-GFRα-1シグナルは様々なニューロンに対して細胞死を抑制する効果がある。しかし、必ずしもin vitroで栄養因子活性が確認されたニューロンが、GDNF-GFRα-1シグナルやRETのノックアウトマウスで死んでしまうわけではなく、例えば中脳腹側のドーパミンニューロンの生存に異常はみられない。これは、他の栄養因子による代償効果であると考えられ、ドーパミン作動性ニューロンの場合にはconserved dopamine neurotrophic factor (CDNF)などの関与が示唆されている[2]。一方、後根神経節の一部の侵害受容性感覚ニューロンや迷走神経節(nodose ganglion)の内蔵感覚ニューロン(visceral sensory neuron)の生存はGDNF-GFRα-1-RETシグナルに依存しており、とりわけ侵害受容性感覚ニューロンは胎生期の神経成長因子依存から出生後にGDNF依存にシフトする事が知られている[3]。感覚ニューロンだけでなく、運動ニューロンの減少も報告されている。GDNFのノックアウトマウスでは三叉神経で20%、脊髄レベルで20〜30%程度の減少が認められる。
GDNFシグナルは分化したニューロンについてのみ、栄養因子として機能するわけではない。RET遺伝子はヒトのヒルシュスプルング病の原因遺伝子として知られており、消化管のうち胃より後方において、腸管神経系(enteric nervous system)が欠損する。すなわち、腸管神経系は後脳レベルから消化管に侵入してくる神経堤細胞(vagal neural crest)がニューロンやグリアに分化しながら分布を広げ、形成されていくのだが、この神経堤細胞の増殖と生存にGDNF-GFRα-1-RETシグナルが重要である[4]。
GDNFシグナルのさまざまな機能
GDNF-GFRα1シグナルは、細胞の生存だけでなく細胞移動のガイダンス分子としても働くと考えられている。生後の大脳側脳室から生まれた神経前駆細胞は吻側移動経路(rostral migratory stream, RSM)という移動経路を通って嗅球に分布するが、この移動にはNCAMが重要であることが知られている[5]。このニューロン前駆細胞にはRETは発現していないが、GFRα-1が発現している。GFRα-1ノックアウトマウスではRSMが若干太くなっていることから、細胞移動に異常があるものと考えられている。GDNFはGFRα-1と結合した後、NCAMと相互作用して、NCAM同士のホモフィリックな結合を阻害するとともに、細胞質に局在するチロシンキナーゼであるFynやFocal adhesion kinase(FAK)を活性化する[6]ことから、RET非依存的なGDNF-GFRα-1-NCAMシグナルがRMSにおけるニューロン前駆細胞の移動を促進していると思われる。同様のシグナルは培養下で海馬や大脳皮質ニューロンの神経突起伸長促進やシナプス前部の成熟とシナプス形成、シュワン細胞の移動などの機能を担っている。また、RETやNCAMにも依存しないGFRα-1活性として、大脳皮質のGABA性ニューロンの接線方向への移動の制御が報告されている。
シナプス形成の制御
GFRα-1はリガンドであるGDNF依存性の細胞接着因子としても働くことが示されている[7]。一方、GDNF- GFRα-1シグナルが中脳ドーパミン作動性ニューロンや神経筋終末での神経伝達物質分泌の促進や、シナプス小胞のサイズと数の増加、アセチルコリン受容体のクラスター形成の促進などの効果を持つことも示されている[8][9]。また、GDNFのシナプスに対する影響はRETに依存せず、NCAMに部分的に依存するケースが報告されている。これらのことから、GDNF- GFRα-1が接着因子としてシナプスの形成や維持、活性の制御に関わっているのではないかと考えられている。このような考えに対応して、GDNFの変異体マウスでは学習能力に問題があり、GDNFヘテロ変異マウスの海馬において一時的なシナプス前タンパク質の集積異常が認められる。
薬物依存、ドーパミン仮説とGDNF
薬物依存には通常時のドーパミンレベルの低下が関係していると言われており(ドーパミン仮説)、アルコールや様々な薬物が側坐核(nucleus accumbens)におけるドーパミンレベルの低下をおこすことが報告されている。前述したGDNFのドーパミン作動性ニューロンに対する効果に加え、アルコール依存症の患者の血中GDNF量が減少していることや、GDNFのヘテロノックアウトマウスではアルコールの報酬効果が上昇していることなどから、GDNFが薬物依存症治療に有効なのではないかと考えられている[10]。Barakらはアルコール依存状態のラットについて調べ、側坐核におけるドーパミン量の減少を確認するとともに、ドーパミン作動性ニューロンの細胞体がある腹側被蓋野(ventral tegmental area)へのGDNF注入が側坐核のドーパミン量を回復させ、アルコール依存状態の改善をもたらすことを示した[11]。
参考文献
- ↑ L F Lin, D H Doherty, J D Lile, S Bektesh, F Collins
GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.
Science: 1993, 260(5111);1130-2 [PubMed:8493557] [WorldCat.org]
- ↑ Päivi Lindholm, Merja H Voutilainen, Juha Laurén, Johan Peränen, Veli-Matti Leppänen, Jaan-Olle Andressoo, Maria Lindahl, Sanna Janhunen, Nisse Kalkkinen, Tõnis Timmusk, Raimo K Tuominen, Mart Saarma
Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo.
Nature: 2007, 448(7149);73-7 [PubMed:17611540] [WorldCat.org] [DOI]
- ↑ D C Molliver, D E Wright, M L Leitner, A S Parsadanian, K Doster, D Wen, Q Yan, W D Snider
IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life.
Neuron: 1997, 19(4);849-61 [PubMed:9354331] [WorldCat.org]
- ↑ H Enomoto, T Araki, A Jackman, R O Heuckeroth, W D Snider, E M Johnson, J Milbrandt
GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys.
Neuron: 1998, 21(2);317-24 [PubMed:9728913] [WorldCat.org]
- ↑ Eduardo Gascon, Laszlo Vutskits, Jozsef Zoltan Kiss
Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons.
Brain Res Rev: 2007, 56(1);101-18 [PubMed:17658613] [WorldCat.org] [DOI]
- ↑ Gustavo Paratcha, Fernanda Ledda, Carlos F Ibáñez
The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands.
Cell: 2003, 113(7);867-79 [PubMed:12837245] [WorldCat.org]
- ↑ Fernanda Ledda, Gustavo Paratcha, Tatiana Sandoval-Guzmán, Carlos F Ibáñez
GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion.
Nat. Neurosci.: 2007, 10(3);293-300 [PubMed:17310246] [WorldCat.org] [DOI]
- ↑ Christel Baudet, Ester Pozas, Igor Adameyko, Elisabet Andersson, Johan Ericson, Patrik Ernfors
Retrograde signaling onto Ret during motor nerve terminal maturation.
J. Neurosci.: 2008, 28(4);963-75 [PubMed:18216204] [WorldCat.org] [DOI]
- ↑ M J Bourque, L E Trudeau
GDNF enhances the synaptic efficacy of dopaminergic neurons in culture.
Eur. J. Neurosci.: 2000, 12(9);3172-80 [PubMed:10998101] [WorldCat.org]
- ↑ Charles L Pickens, Donna J Calu
Alcohol reward, dopamine depletion, and GDNF.
J. Neurosci.: 2011, 31(42);14833-4 [PubMed:22016515] [WorldCat.org] [DOI]
- ↑ Segev Barak, Sebastien Carnicella, Quinn V Yowell, Dorit Ron
Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking.
J. Neurosci.: 2011, 31(27);9885-94 [PubMed:21734280] [WorldCat.org] [DOI]