9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
9行目: | 9行目: | ||
炭素鎖内の二重結合を二つ有するPGD<sub>2</sub>、PGE<sub>2</sub>、PGF<sub>2α</sub>、PGI<sub>2</sub>、TXA<sub>2</sub>は、遊離[[アラキドン酸]]から生成される<ref name="ref2" /><ref name="ref3" /><ref name="ref4"><pubmed>21942677</pubmed></ref><ref name="ref5"><pubmed>18834304</pubmed></ref><ref name="ref6"><pubmed>14636669</pubmed></ref>。まず、酸素添加酵素であるシクロオキシゲナーゼ(cyclooxygenase; COX)により、アラキドン酸からプロスタグランジンG<sub>2</sub>(PGG<sub>2</sub>)、さらにプロスタグランジンH<sub>2</sub>(PGH<sub>2</sub>)が産生される。次いで特異的な合成酵素の働きにより、PGH<sub>2</sub>が各種PGに変換される。 | 炭素鎖内の二重結合を二つ有するPGD<sub>2</sub>、PGE<sub>2</sub>、PGF<sub>2α</sub>、PGI<sub>2</sub>、TXA<sub>2</sub>は、遊離[[アラキドン酸]]から生成される<ref name="ref2" /><ref name="ref3" /><ref name="ref4"><pubmed>21942677</pubmed></ref><ref name="ref5"><pubmed>18834304</pubmed></ref><ref name="ref6"><pubmed>14636669</pubmed></ref>。まず、酸素添加酵素であるシクロオキシゲナーゼ(cyclooxygenase; COX)により、アラキドン酸からプロスタグランジンG<sub>2</sub>(PGG<sub>2</sub>)、さらにプロスタグランジンH<sub>2</sub>(PGH<sub>2</sub>)が産生される。次いで特異的な合成酵素の働きにより、PGH<sub>2</sub>が各種PGに変換される。 | ||
一般にPG生成は[[phospholipase A<sub>2</sub>]](PLA<sub>2</sub>)により細胞膜中のリン脂質からアラキドン酸が切り出されて開始すると考えられている<ref name="ref5" /><ref name="ref6" />。例えば、[[wikipedia:ja:マクロファージ|マクロファージ]]からのPG産生は[[cytosolic PLA<sub>2</sub>]] (cPLA<sub>2</sub>)の遺伝子欠損によりほぼ完全に消失する。cPLA<sub>2</sub>の活性は細胞内[[Ca<sup>2+</sup>]]上昇によるcPLA<sub>2</sub>の膜移行、[[MAPキナーゼ]]などによる[[リン酸化]]、遺伝子発現制御といった複数のメカニズムにより制御されている。しかし近年、脳、肝臓、肺の遊離アラキドン酸とその下流で生成されるPGの多くが、[[モノアシルグリセロールリパーゼ]](monoacylglycerol lipase; MAGL)依存的な[[内因性カナビノイド]][[2-アラキドノイルグリセロール]](2-arachidonyl-glycerol; 2-AG)の[[wikipedia:ja:加水分解|加水分解]]により生ずることが報告されている<ref name="ref7"><pubmed> 22021672 </pubmed></ref>。 | 一般にPG生成は[[phospholipase A2|phospholipase A<sub>2</sub>]](PLA<sub>2</sub>)により細胞膜中のリン脂質からアラキドン酸が切り出されて開始すると考えられている<ref name="ref5" /><ref name="ref6" />。例えば、[[wikipedia:ja:マクロファージ|マクロファージ]]からのPG産生は[[cytosolic PLA2|cytosolic PLA<sub>2</sub>]] (cPLA<sub>2</sub>)の遺伝子欠損によりほぼ完全に消失する。cPLA<sub>2</sub>の活性は細胞内[[Ca2+|Ca<sup>2+</sup>]]上昇によるcPLA<sub>2</sub>の膜移行、[[MAPキナーゼ]]などによる[[リン酸化]]、遺伝子発現制御といった複数のメカニズムにより制御されている。しかし近年、脳、肝臓、肺の遊離アラキドン酸とその下流で生成されるPGの多くが、[[モノアシルグリセロールリパーゼ]](monoacylglycerol lipase; MAGL)依存的な[[内因性カナビノイド]][[2-アラキドノイルグリセロール]](2-arachidonyl-glycerol; 2-AG)の[[wikipedia:ja:加水分解|加水分解]]により生ずることが報告されている<ref name="ref7"><pubmed> 22021672 </pubmed></ref>。 | ||
[[COX]]には[[COX-1]]と[[COX-2]]と呼ばれる二つのアイソフォームが存在する<ref name="ref2" /><ref name="ref3" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。一般に、COX-1は刺激による誘導性が乏しいことから構成型と呼ばれ、COX-2は刺激により[[遺伝子発現]]が誘導されることから誘導型と呼ばれるが、[[脳]]や[[wikipedia:ja:腎臓|腎臓]]ではCOX-1、COX-2のいずれも恒常的に発現している。生理的条件ではCOX-1は[[ミクログリア]]や血管周囲マクロファージに<ref name="ref8"><pubmed>22022466</pubmed></ref>、COX-2は[[大脳皮質]]や[[海馬]]などの[[錐体神経細胞]]に発現している<ref name="ref9"><pubmed>8352945</pubmed></ref>。さらに炎症や神経変性疾患では、[[血管内皮細胞]]や[[グリア細胞]]にもCOX-2の発現が誘導される<ref name="ref10"><pubmed>15353317</pubmed></ref><ref name="ref11"><pubmed>15081582</pubmed></ref>。COXは非ステロイド性抗炎症薬(NSAID)の主たる標的分子であり、NSAIDの抗炎症作用、鎮痛作用、解熱作用はPGの合成阻害活性によると考えられている<ref name="ref2" />。 | [[COX]]には[[COX-1]]と[[COX-2]]と呼ばれる二つのアイソフォームが存在する<ref name="ref2" /><ref name="ref3" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。一般に、COX-1は刺激による誘導性が乏しいことから構成型と呼ばれ、COX-2は刺激により[[遺伝子発現]]が誘導されることから誘導型と呼ばれるが、[[脳]]や[[wikipedia:ja:腎臓|腎臓]]ではCOX-1、COX-2のいずれも恒常的に発現している。生理的条件ではCOX-1は[[ミクログリア]]や血管周囲マクロファージに<ref name="ref8"><pubmed>22022466</pubmed></ref>、COX-2は[[大脳皮質]]や[[海馬]]などの[[錐体神経細胞]]に発現している<ref name="ref9"><pubmed>8352945</pubmed></ref>。さらに炎症や神経変性疾患では、[[血管内皮細胞]]や[[グリア細胞]]にもCOX-2の発現が誘導される<ref name="ref10"><pubmed>15353317</pubmed></ref><ref name="ref11"><pubmed>15081582</pubmed></ref>。COXは非ステロイド性抗炎症薬(NSAID)の主たる標的分子であり、NSAIDの抗炎症作用、鎮痛作用、解熱作用はPGの合成阻害活性によると考えられている<ref name="ref2" />。 | ||
49行目: | 49行目: | ||
==== 覚醒睡眠 ==== | ==== 覚醒睡眠 ==== | ||
PGD<sub>2</sub>が睡眠促進物質であることはPGD<sub>2</sub>の[[側脳室]]投与により示された<ref name="ref37"><pubmed>10724461</pubmed></ref>。PGD合成酵素には[[L-PGDS]]と[[H-PGDS]]があるが、L-PGDSの[[阻害薬]]であるSeCl<sub>4</sub>とL-PGDS欠損マウスを用いて、L-PGDSが生理的な睡眠に関与することが示された<ref name="ref38"><pubmed>17093043</pubmed></ref>。さらにL-PGDS欠損マウスを用いた解析から、断眠によりL-PGDS依存的に脳内のPGD2が蓄積し、このPGD2生成が断眠後のノンレム睡眠のリバウンドに必須であることが示されている<ref name="ref39">Eguchi, N., Kuwahata, Y., Pinzar, E., Mochizuki, T., Urade, Y., Hayaishi, O. (1999) Sleep of gene-knockout and transgenic mice for prostaglandin D synthase. Sleep Res. Online 2 Suppl-1, 665</ref>。PGD<sub>2</sub>による睡眠促進作用はDP1を介することがDP1欠損マウスを用いて示されている<ref name="ref40"><pubmed>11562489</pubmed></ref>。L-PGDSは[[軟髄膜]]、[[脈絡叢]]、[[オリゴデンドロサイト]]に発現するのに対し、DP1は睡眠誘導に関わる腹外側視索前野の近傍の軟髄膜に限局して発現する<ref name="ref40" />。PGD<sub>2</sub>による睡眠促進作用は[[アデノシンA<sub>2a</sub>受容体]]の阻害薬の腹腔内投与により阻害される<ref name="ref41"><pubmed>8650205</pubmed></ref>。以上の結果から、L-PGDSにより産生されたPGD<sub>2</sub>が軟膜に発現するDP1に結合し、[[くも膜下腔]]のアデノシン濃度を上昇させ、アデノシンA<sub>2a</sub>受容体を介して睡眠を誘導すると考えられている。一方、PGE<sub>2</sub>は[[覚醒促進物質]]であり、[[隆起乳頭体核]](tuberomammillary nucleus; TMN)の[[ヒスタミン]]神経細胞に発現したEP4に作用し、ヒスタミンの生合成と[[大脳皮質]]での放出を促進することが示唆されている<ref name="ref42"><pubmed>12853415</pubmed></ref>。 | PGD<sub>2</sub>が睡眠促進物質であることはPGD<sub>2</sub>の[[側脳室]]投与により示された<ref name="ref37"><pubmed>10724461</pubmed></ref>。PGD合成酵素には[[L-PGDS]]と[[H-PGDS]]があるが、L-PGDSの[[阻害薬]]であるSeCl<sub>4</sub>とL-PGDS欠損マウスを用いて、L-PGDSが生理的な睡眠に関与することが示された<ref name="ref38"><pubmed>17093043</pubmed></ref>。さらにL-PGDS欠損マウスを用いた解析から、断眠によりL-PGDS依存的に脳内のPGD2が蓄積し、このPGD2生成が断眠後のノンレム睡眠のリバウンドに必須であることが示されている<ref name="ref39">Eguchi, N., Kuwahata, Y., Pinzar, E., Mochizuki, T., Urade, Y., Hayaishi, O. (1999) Sleep of gene-knockout and transgenic mice for prostaglandin D synthase. Sleep Res. Online 2 Suppl-1, 665</ref>。PGD<sub>2</sub>による睡眠促進作用はDP1を介することがDP1欠損マウスを用いて示されている<ref name="ref40"><pubmed>11562489</pubmed></ref>。L-PGDSは[[軟髄膜]]、[[脈絡叢]]、[[オリゴデンドロサイト]]に発現するのに対し、DP1は睡眠誘導に関わる腹外側視索前野の近傍の軟髄膜に限局して発現する<ref name="ref40" />。PGD<sub>2</sub>による睡眠促進作用は[[アデノシンA2a受容体|アデノシンA<sub>2a</sub>受容体]]の阻害薬の腹腔内投与により阻害される<ref name="ref41"><pubmed>8650205</pubmed></ref>。以上の結果から、L-PGDSにより産生されたPGD<sub>2</sub>が軟膜に発現するDP1に結合し、[[くも膜下腔]]のアデノシン濃度を上昇させ、アデノシンA<sub>2a</sub>受容体を介して睡眠を誘導すると考えられている。一方、PGE<sub>2</sub>は[[覚醒促進物質]]であり、[[隆起乳頭体核]](tuberomammillary nucleus; TMN)の[[ヒスタミン]]神経細胞に発現したEP4に作用し、ヒスタミンの生合成と[[大脳皮質]]での放出を促進することが示唆されている<ref name="ref42"><pubmed>12853415</pubmed></ref>。 | ||
==== 疼痛 ==== | ==== 疼痛 ==== | ||
87行目: | 87行目: | ||
[[興奮毒性]]による[[神経細胞死]]におけるPGの役割は数多く報告されている。大脳皮質や海馬の興奮性神経細胞では、神経活動によりCOX-2が誘導される<ref name="ref21" />。また[[カイニン酸]]の局所投与による[[グルタミン酸受容体]]刺激では8時間以降の後期でCOX-2とmPGES-1が血管内皮に発現誘導され、カイニン酸刺激による海馬でのPGE<sub>2</sub>産生誘導と神経細胞死の誘導にmPGES-1が関与することが遺伝子欠損マウスにより示されている<ref name="ref70"><pubmed>19658194</pubmed></ref>。 | [[興奮毒性]]による[[神経細胞死]]におけるPGの役割は数多く報告されている。大脳皮質や海馬の興奮性神経細胞では、神経活動によりCOX-2が誘導される<ref name="ref21" />。また[[カイニン酸]]の局所投与による[[グルタミン酸受容体]]刺激では8時間以降の後期でCOX-2とmPGES-1が血管内皮に発現誘導され、カイニン酸刺激による海馬でのPGE<sub>2</sub>産生誘導と神経細胞死の誘導にmPGES-1が関与することが遺伝子欠損マウスにより示されている<ref name="ref70"><pubmed>19658194</pubmed></ref>。 | ||
神経細胞死におけるPGE<sub>2</sub>の作用機序についてはPGE受容体欠損マウスを用いた解析から、少なくともEP1、EP2、EP3の関与が示されている。[[NMDA]]の局所投与による神経細胞死や[[脳虚血]]による[[梗塞]]巣はEP1阻害薬投与やEP1欠損マウスでは減弱する<ref name="ref71"><pubmed>16432513</pubmed></ref><ref name="ref72"><pubmed>17600836</pubmed></ref>。興奮毒性には細胞内Ca2+上昇が重要であるが、NMDA刺激による[[Na<sup>+</sup>-Ca<sup>2+</sup>交換輸送体]]の機能低下と細胞内Ca<sup>2+</sup>上昇にEP1が関与することが遺伝子欠損マウスと特異的阻害薬により示されている<ref name="ref71" />。 | 神経細胞死におけるPGE<sub>2</sub>の作用機序についてはPGE受容体欠損マウスを用いた解析から、少なくともEP1、EP2、EP3の関与が示されている。[[NMDA]]の局所投与による神経細胞死や[[脳虚血]]による[[梗塞]]巣はEP1阻害薬投与やEP1欠損マウスでは減弱する<ref name="ref71"><pubmed>16432513</pubmed></ref><ref name="ref72"><pubmed>17600836</pubmed></ref>。興奮毒性には細胞内Ca2+上昇が重要であるが、NMDA刺激による[[[Na+-Ca2+交換輸送体|Na<sup>+</sup>-Ca<sup>2+</sup>交換輸送体]]の機能低下と細胞内Ca<sup>2+</sup>上昇にEP1が関与することが遺伝子欠損マウスと特異的阻害薬により示されている<ref name="ref71" />。 | ||
一方、[[初代培養]]した海馬神経細胞や海馬スライスではグルタミン酸受容体活性化による神経細胞死がEP2アゴニストや[[アロステリック]]なEP2[[賦活薬]]により減弱することが報告されている<ref name="ref73"><pubmed> 14715958 </pubmed></ref><ref name="ref74"><pubmed> 20080612 </pubmed></ref>。この結果に合致し、EP2欠損マウスでは脳虚血モデルにおける梗塞巣が増大する<ref name="ref75"><pubmed> 15852374 </pubmed></ref>。しかし、後に詳述する[[神経変性疾患]]モデルマウスにおける神経細胞死はEP2欠損により減弱し<ref name="ref76"><pubmed>16267225</pubmed></ref><ref name="ref77"><pubmed>18825663</pubmed></ref>、[[ピロカルピン]]投与による神経細胞死もEP2阻害薬により減弱することから<ref name="ref78"><pubmed>22323596</pubmed></ref>、神経細胞死におけるEP2の役割は複雑である。 | 一方、[[初代培養]]した海馬神経細胞や海馬スライスではグルタミン酸受容体活性化による神経細胞死がEP2アゴニストや[[アロステリック]]なEP2[[賦活薬]]により減弱することが報告されている<ref name="ref73"><pubmed> 14715958 </pubmed></ref><ref name="ref74"><pubmed> 20080612 </pubmed></ref>。この結果に合致し、EP2欠損マウスでは脳虚血モデルにおける梗塞巣が増大する<ref name="ref75"><pubmed> 15852374 </pubmed></ref>。しかし、後に詳述する[[神経変性疾患]]モデルマウスにおける神経細胞死はEP2欠損により減弱し<ref name="ref76"><pubmed>16267225</pubmed></ref><ref name="ref77"><pubmed>18825663</pubmed></ref>、[[ピロカルピン]]投与による神経細胞死もEP2阻害薬により減弱することから<ref name="ref78"><pubmed>22323596</pubmed></ref>、神経細胞死におけるEP2の役割は複雑である。 |