「コフィリン」の版間の差分

ナビゲーションに移動 検索に移動
 
(2人の利用者による、間の9版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/read0191579 大橋 一正]</font><br>
''東北大学 大学院生命科学研究科 生命機能科学専攻''<br>
DOI:<selfdoi /> 原稿受付日:2013年1月8日 原稿完成日:2013年8月12日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
{{Infobox protein family
{{Infobox protein family
| Symbol = Cofilin_ADF
| Symbol = Cofilin_ADF
21行目: 28行目:
英語名:cofilin  
英語名:cofilin  


{{box|text=
 コフィリンは、1980年代に[[wikipedia:ja:ニワトリ|ニワトリ]]や[[wikipedia:ja:ブタ|ブタ]]の脳の抽出液から[[アクチン]]線維の脱重合を促進するタンパク質として同定、精製された<ref><pubmed>6893966</pubmed></ref><ref><pubmed>6894753</pubmed></ref><ref name="ref1"><pubmed>6509022</pubmed></ref>。コフィリンは、単量体アクチン(G-アクチン)、アクチン線維(F-アクチン)に結合し、F-アクチンを切断・脱重合する活性をもつ20 kDaのアクチン結合タンパク質である。生存に必須であり、[[wikipedia:ja:酵母|酵母]]から[[wikipedia:ja:ヒト|ヒト]]まで高度に保存されている。コフィリンは、F-アクチンのターンオーバーを促進することで細胞のアクチン骨格のダイナミクスを生み出す働きを持ち、細胞内の基本的なアクチン骨格の制御因子の一つである<ref name="ref2"><pubmed>17338919</pubmed></ref><ref name="ref3"><pubmed>20133134</pubmed></ref><ref name="ref4"><pubmed>21850706</pubmed></ref>。また、様々な[[細胞内シグナル分子]]によって活性が制御されアクチン骨格の時空間的な再構築に寄与する<ref name="ref3" /><ref name="ref5"><pubmed>23153585 </pubmed></ref>。  
 コフィリンは、1980年代に[[wikipedia:ja:ニワトリ|ニワトリ]]や[[wikipedia:ja:ブタ|ブタ]]の脳の抽出液から[[アクチン]]線維の脱重合を促進するタンパク質として同定、精製された<ref><pubmed>6893966</pubmed></ref><ref><pubmed>6894753</pubmed></ref><ref name="ref1"><pubmed>6509022</pubmed></ref>。コフィリンは、単量体アクチン(G-アクチン)、アクチン線維(F-アクチン)に結合し、F-アクチンを切断・脱重合する活性をもつ20 kDaのアクチン結合タンパク質である。生存に必須であり、[[wikipedia:ja:酵母|酵母]]から[[wikipedia:ja:ヒト|ヒト]]まで高度に保存されている。コフィリンは、F-アクチンのターンオーバーを促進することで細胞のアクチン骨格のダイナミクスを生み出す働きを持ち、細胞内の基本的なアクチン骨格の制御因子の一つである<ref name="ref2"><pubmed>17338919</pubmed></ref><ref name="ref3"><pubmed>20133134</pubmed></ref><ref name="ref4"><pubmed>21850706</pubmed></ref>。また、様々な[[細胞内シグナル分子]]によって活性が制御されアクチン骨格の時空間的な再構築に寄与する<ref name="ref3" /><ref name="ref5"><pubmed>23153585 </pubmed></ref>。  
}}


== 構造  ==
== 構造  ==
35行目: 44行目:
[[Image:脳科学辞典cofilin図1.jpg|thumb|right|300px|'''図1. ADF-Hドメインをもつコフィリンのサブファミリー''']]  
[[Image:脳科学辞典cofilin図1.jpg|thumb|right|300px|'''図1. ADF-Hドメインをもつコフィリンのサブファミリー''']]  


 コフィリンは、[[wikipedia:ja:真核細胞|真核細胞]]全てに存在する生存に必須のタンパク質であり、アクチン結合タンパク質の中で最も存在量の多いタンパク質の一つで細胞内に数μモルの濃度で存在する。発現分布は、[http://mouse.brain-map.org/experiment/show/70719651 非筋肉型コフィリン]、[[http://mouse.brain-map.org/experiment/show/74357607 筋肉型コフィリン]]、ADFの3種類のいずれかが全ての細胞に発現しており、[[wikipedia:ja:筋肉|筋肉]]では、主に筋肉型コフィリンが主に発現している<ref><pubmed>8195165</pubmed></ref>。筋組織以外では非筋肉型コフィリンとADFが主に発現している<ref name="ref6"><pubmed>11809832</pubmed></ref><ref name="ref2" />。コフィリンは[[トロポミオシン]]や[[ミオシン]]と競合的にF-アクチンに結合するため<ref name="ref1" /><ref><pubmed>11901171</pubmed></ref>、コフィリンが多く存在する[[ラメリポディア]]や局在がほとんど見られないストレスファイバーなど、アクチン骨格への結合量はアクチン骨格構造によって異なる。しかし、コフィリンの活性阻害実験から、細胞内のアクチン骨格構造はすべてコフィリンの結合により脱重合されることでターンオーバーしていると考えられる<ref><pubmed>15548599</pubmed></ref><ref><pubmed>21868383</pubmed></ref>。
 コフィリンは、[[wikipedia:ja:真核細胞|真核細胞]]全てに存在する生存に必須のタンパク質であり、アクチン結合タンパク質の中で最も存在量の多いタンパク質の一つで細胞内に数μモルの濃度で存在する。発現分布は、[http://mouse.brain-map.org/experiment/show/70719651 非筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/74357607 筋肉型コフィリン]、[http://mouse.brain-map.org/experiment/show/69671630 ADF]の3種類のいずれかが全ての細胞に発現しており、[[wikipedia:ja:筋肉|筋肉]]では、主に筋肉型コフィリンが主に発現している<ref><pubmed>8195165</pubmed></ref>。筋組織以外では非筋肉型コフィリンとADFが主に発現している<ref name="ref6"><pubmed>11809832</pubmed></ref><ref name="ref2" />。コフィリンは[[トロポミオシン]]や[[ミオシン]]と競合的にF-アクチンに結合するため<ref name="ref1" /><ref><pubmed>11901171</pubmed></ref>、コフィリンが多く存在する[[ラメリポディア]]や局在がほとんど見られないストレスファイバーなど、アクチン骨格への結合量はアクチン骨格構造によって異なる。しかし、コフィリンの活性阻害実験から、細胞内のアクチン骨格構造はすべてコフィリンの結合により脱重合されることでターンオーバーしていると考えられる<ref><pubmed>15548599</pubmed></ref><ref><pubmed>21868383</pubmed></ref>。


== アクチン骨格再構築おける機能 ==
==生理活性==
===アクチン骨格再構築おける機能 ===


 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。
 細胞内における基本的なコフィリンの機能は、F-アクチンを切断・脱重合し、重合するためのG-アクチンを供給することでアクチン骨格の流動性を生みだす働きである。そのため、コフィリンの活性化はF-アクチンを切断・脱重であるにも関わらずラメリポディア形成などのアクチン重合に必須である。
48行目: 58行目:


===活性調節===
===活性調節===
 コフィリンのアクチン脱重合・切断活性に対する制御は、[[ホスファチジルイノシトール4、5ビスリン酸]]([[PIP2]])との結合によるアクチンへの結合阻害、3番目の[[wikipedia:ja:セリン|セリン]]残基の[[リン酸]]化によるアクチンへの結合阻害、[[Actin interacting protein 1]]([[Aip1]])、[[アデニル酸シクラーゼ結合タンパク質]]([[CAP]])との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />。PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的な[[ホスホリパーゼ C]]([[Phospholipase C]]、[[PLC]])の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。
 コフィリンのアクチン脱重合・切断活性に対する制御は、[[ホスファチジルイノシトール|ホスファチジルイノシトール4、5ビスリン酸]]([[ホスファチジルイノシトール|PIP2]])との結合によるアクチンへの結合阻害、3番目の[[wikipedia:ja:セリン|セリン]]残基の[[リン酸化]]によるアクチンへの結合阻害、[[Actin interacting protein 1]]([[Aip1]])、[[アデニル酸シクラーゼ結合タンパク質]]([[CAP]])との結合による活性促進の制御が報告されている(図2)<ref name="ref2" /><ref name="ref4" />。PIP2との結合によるコフィリンの活性阻害では、細胞への刺激依存的な[[ホスホリパーゼ C]]([[Phospholipase C]]、[[PLC]])の活性化によってPIP2が分解されコフィリンの活性化を促進しラメリポディア形成などが促進されることが報告されている<ref><pubmed>15337778</pubmed></ref><ref><pubmed>18086920</pubmed></ref>。


====リン酸化====
 コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[タンパク質リン酸化酵素]]として[[LIMキナーゼファミリー]]([[LIMK1]]、[[LIMK2]]、[[TESK1]]、[[TESK2]])が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>。LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1、LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1、TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />。
 コフィリンを不活性化する3番目のセリン残基のリン酸化を行う特異的な[[タンパク質リン酸化酵素]]として[[LIMキナーゼファミリー]]([[LIMK1]]、[[LIMK2]]、[[TESK1]]、[[TESK2]])が同定されている<ref><pubmed>9655398</pubmed></ref><ref><pubmed>11294912</pubmed></ref>。LIMキナーゼファミリーは、N末端にLIMドメインを持つLIMK1、LIMK2とLIMドメインは持たないがキナーゼドメインの相同性が高く保存されたTESK1、TESK2が存在する。LIMK1は発達過程の中枢神経系に高発現している<ref name="ref5" />。


 これに対して、特異的なコフィリンの[[タンパク質脱リン酸化酵素]]として[[Slingshot]]ファミリー([[Slingshot-1]]、[[Slingshot-2]][[Slingshot-3]])が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外に[[protein phosphatase 1]][[PP1]])、[[protein phosphatase 2A]]([[PP2A]])、[[ハロ酸デヒドロゲナーゼ]]の一つでタンパク質脱リン酸化酵素として働く[[Chronophin]]が脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />。
 LIMキナーゼは、[[Rhoファミリー低分子量Gタンパク質]]、[[Ca2+|Ca<sup>2+</sup>]]シグナル、p38[[MAPキナーゼ]]など様々な上流シグナルによって活性が制御されている。SlingshotもCa<sup>2+</sup>シグナル、Rhoファミリー低分子量Gタンパク質、[[PI3キナーゼ]]、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、[[Phospholipase D1]]([[PLD1]])に対してリン酸化コフィリンが結合しPLD1を活性化することで[[Rac]]の活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。


 コフィリンのリン酸化制御は、進化的に[[wikipedia:ja:ショウジョウバエ|ショウジョウバエ]]以降で保存されており、[[wikipedia:ja:線虫|線虫]]、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。
 コフィリンのリン酸化制御は、進化的に[[wikipedia:ja:ショウジョウバエ|ショウジョウバエ]]以降で保存されており、[[線虫]]、酵母にはLIMキナーゼ、Slingshotに相同な遺伝子は存在しない。


 LIMキナーゼは、[[Rhoファミリー低分子量Gタンパク質]][[Ca2+]]シグナル、p38[[MAPキナーゼ]]など様々な上流シグナルによって活性が制御されている。SlingshotもCa2+シグナル、Rhoファミリー低分子量Gタンパク質、[[PI3キナーゼ]]、F-アクチンとの結合によって活性化される(図3)<ref name="ref5" />。また、[[Phospholipase D1]]([[PLD1]])に対してリン酸化コフィリンが結合しPLD1を活性化することで[[Rac]]の活性化を促進することも報告されている<ref><pubmed>17853892</pubmed></ref>。個体においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンの[[ノックアウトマウス]]は胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。その他に、コフィリンは[[アポトーシス]]の初期において[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]に局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。   
====脱リン酸化====
 特異的なコフィリンの[[タンパク質脱リン酸化酵素]]として[[Slingshot]]ファミリー([[Slingshot-1]][[Slingshot-2]]、[[Slingshot-3]])が同定されている<ref><pubmed>11832213</pubmed></ref>。これ以外に[[protein phosphatase 1]]([[PP1]])、[[protein phosphatase 2A]]([[PP2A]])、[[ハロ酸デヒドロゲナーゼ]]の一つでタンパク質脱リン酸化酵素として働く[[Chronophin]]が脱リン酸化酵素として働くことが報告されている<ref><pubmed>11093160</pubmed></ref><ref><pubmed>15580268</pubmed></ref><ref name="ref5" />


== 神経細胞における役割  ==
== 神経細胞における役割  ==
62行目: 74行目:
[[Image:脳科学辞典cofilin図2.jpg|thumb|right|300px|'''図2. コフィリンの活性制御''']]  
[[Image:脳科学辞典cofilin図2.jpg|thumb|right|300px|'''図2. コフィリンの活性制御''']]  
[[Image:脳科学辞典cofilin図3.jpg|thumb|right|300px|'''図3. コフィリンのリン酸化による活性制御とシグナル伝達機構''']]  
[[Image:脳科学辞典cofilin図3.jpg|thumb|right|300px|'''図3. コフィリンのリン酸化による活性制御とシグナル伝達機構''']]  
 神経組織や神経細胞においてコフィリンは、神経細胞の移動、形態、[[軸索]]、[[樹状突起]]の伸展・退縮、[[樹状突起スパイン]]の形態などをアクチン骨格の制御を介して関与すると考えられる。また、神経細胞に対する様々な刺激におけるコフィリンのリン酸化による活性制御の役割が研究されている<ref><pubmed>18397729</pubmed></ref><ref><pubmed>22566410</pubmed></ref><ref name="ref5" />。


 神経組織や神経細胞においてコフィリンは、神経細胞の移動、形態、[[軸索]]、[[樹状突起]]の伸展・退縮、[[樹状突起スパイン]]の形態などをアクチン骨格の制御を介して関与すると考えられる。コフィリンとADFのコンディショナルノックアウトマウスの解析では、非筋肉型のコフィリン遺伝子(n-cofilin)のノックアウトによって脳の発生過程において神経細胞の移動や[[分裂]]に異常が見られ 、こ れに対して、ADF遺伝子ノックアウトでは、脳の発生には影響しないことが報告されている<ref name="ref9" />。
===神経細胞形態制御===
 神経突起の伸展・退縮における機能については、[[NGF]]による[[後根神経節]](DRG)細胞の[[軸索伸長]]にはLIMキナーゼとSlingshotの働きが共に必要であること<ref><pubmed>17360713</pubmed></ref>、また、[[ネトリン1]]([[Netrin-1]])によるDRG細胞の軸索伸長にコフィリンの脱リン酸化が必要であることが報告されている<ref><pubmed>20506164</pubmed></ref>。これに対して、マウスの後根神経節細胞の[[セマホリン]]による軸索の退縮にLIMキナーゼの活性化によるコフィリンのリン酸化が必要であることが報告され<ref><pubmed>11276226</pubmed></ref>、その後、[[Slit-2]]、[[Nogo-66]]による神経突起退縮にもLIMキナーゼの活性化によるコフィリンのリン酸化が必要であることが報告されている<ref><pubmed>16421320</pubmed></ref><ref><pubmed>16423696</pubmed></ref>。[[wikipedia:ja:カエル|カエル]]の[[脊髄]]神経細胞の軸索の[[BMP]]による誘因と反発においては、LIMキナーゼとSlingshotの活性のバランスによって制御されることが報告されている<ref><pubmed>17606869</pubmed></ref>。また、マウス[[大脳皮質]]細胞の樹状突起形成において、BMP受容体にLIMキナーゼが直接結合し活性化されることが樹状突起形成促進に必要であること<ref><pubmed>15538389</pubmed></ref>、ショウジョウバエにおいて[[BMPタイプII受容体]]にLIMキナーゼが結合し[[神経筋接合部]]のシナプスの安定化に寄与することが報告されている<ref><pubmed>16129399</pubmed></ref>。
 
===シナプス機能の制御===
 海馬スライスを用いた研究によって[[長期増強]] ([[long-term potentiation]], [[LTP]])誘導時に海馬分子層の[[樹状突起スパイン]]においてコフィリンのリン酸化が誘導されアクチン重合が促進することが報告された<ref><pubmed>12741991</pubmed></ref>。その後、コフィリンのリン酸化を阻害するペプチドを用いた実験などから LTD誘導時において刺激依存的な樹状突起スパインにおけるコフィリンのリン酸化によるアクチン重合が必要であることが報告されている<ref><pubmed>15572107</pubmed></ref><ref><pubmed>17989307</pubmed></ref>。
 
===ノックアウトマウス===
 コフィリンとADFのコンディショナルノックアウトマウスの解析では、非筋肉型のコフィリン遺伝子(n-cofilin)のノックアウトによって脳の発生過程において神経細胞の移動や[[分裂]]に異常が見られ 、こ れに対して、ADF遺伝子ノックアウトでは、脳の発生には影響しないことが報告されている<ref name="ref9" />。


 脳の発生後のコフィリンの機能を解析するために、CaMKII-Creラインのマウスを用いたコンディショナル ノックアウトマウスを用いた研究が報告されている。このマウスでは、[[海馬]][[錐体細胞]]の樹状突起スパインが増加し、[[長期増強]]([[LTP]])と[[長期抑圧]]([[LTD]])の誘導が抑制された。これは[[AMPA受容体]]の刺激依存的な[[細胞膜]]上の側方移動が抑制されたためだと考えられている <ref name="ref10"><pubmed>20407421</pubmed></ref>。これらの遺伝子ノックアウトマウスでは、相補的に他のアイソフォームのコフィリン/ADFの発現が上昇しており、標的組織におけるコフィリンファミリーの活性低下の影響を見ていると考えられる<ref name="ref9" /><ref name="ref10" />。  
 脳の発生後のコフィリンの機能を解析するために、CaMKII-Creラインのマウスを用いたコンディショナル ノックアウトマウスを用いた研究が報告されている。このマウスでは、[[海馬]][[錐体細胞]]の樹状突起スパインが増加し、[[長期増強]]([[LTP]])と[[長期抑圧]]([[LTD]])の誘導が抑制された。これは[[AMPA受容体]]の刺激依存的な[[細胞膜]]上の側方移動が抑制されたためだと考えられている <ref name="ref10"><pubmed>20407421</pubmed></ref>。これらの遺伝子ノックアウトマウスでは、相補的に他のアイソフォームのコフィリン/ADFの発現が上昇しており、標的組織におけるコフィリンファミリーの活性低下の影響を見ていると考えられる<ref name="ref9" /><ref name="ref10" />。  


 また、神経細胞に対する様々な刺激におけるコフィリンのリン酸化による活性制御の役割が研究されている<ref><pubmed>18397729</pubmed></ref><ref><pubmed>22566410</pubmed></ref><ref name="ref5" />。最初に、海馬スライスを用いた研究によってLTP誘導時に海馬分子層の樹状突起スパインにおいてコフィリンのリン酸化が誘導されアクチン重合が促進することが報告された<ref><pubmed>12741991</pubmed></ref>。その後、コフィリンのリン酸化を阻害するペプチドを用いた実験などから LTP誘導時において刺激依存的な樹状突起スパインにおけるコフィリンのリン酸化によるアクチン重合が必要であることが報告されている<ref><pubmed>15572107</pubmed></ref><ref><pubmed>17989307</pubmed></ref>。また、LIMキナーゼ遺伝子ノックアウトマウスの解析から、海馬神経細胞の樹状突起の先端の[[成長円錐]]の形態異常、海馬や皮質神経細胞の樹状突起スパインの形態が細長くなること、海馬におけるLTPに異常があることが報告されている<ref><pubmed>12123613</pubmed></ref>。
 また、LIMキナーゼ遺伝子ノックアウトマウスの解析から、海馬神経細胞の樹状突起の先端の[[成長円錐]]の形態異常、海馬や皮質神経細胞の樹状突起スパインの形態が細長くなること、海馬におけるLTPに異常があることが報告されている<ref><pubmed>12123613</pubmed></ref>。


 神経突起の伸展・退縮における機能については、[[NGF]]による[[後根神経節]](DRG)細胞の[[軸索伸長]]にはLIMキナーゼとSlingshotの働きが共に必要であること<ref><pubmed>17360713</pubmed></ref>、また、[[ネトリン1]]([[Netrin-1]])によるDRG細胞の軸索伸長にコフィリンの脱リン酸化が必要であることが報告されている<ref><pubmed>20506164</pubmed></ref>。これに対して、マウスの後根神経節細胞の[[セマホリン]]による軸索の退縮にLIMキナーゼの活性化によるコフィリンのリン酸化が必要であることが報告され<ref><pubmed>11276226</pubmed></ref>、その後、[[Slit-2]]、[[Nogo-66]]による神経突起退縮にもLIMキナーゼの活性化によるコフィリンのリン酸化が必要であることが報告されている<ref><pubmed>16421320</pubmed></ref><ref><pubmed>16423696</pubmed></ref>。[[wikipedia:ja:カエル|カエル]]の[[脊髄]]神経細胞の軸索の[[BMP]]による誘因と反発においては、LIMキナーゼとSlingshotの活性のバランスによって制御されることが報告されている<ref><pubmed>17606869</pubmed></ref>。また、マウス[[大脳皮質]]細胞の樹状突起形成において、BMP受容体にLIMキナーゼが直接結合し活性化されることが樹状突起形成促進に必要であること<ref><pubmed>15538389</pubmed></ref>、ショウジョウバエにおいて[[BMPタイプII受容体]]にLIMキナーゼが結合し[[神経筋接合部]]のシナプスの安定化に寄与することが報告されている<ref><pubmed>16129399</pubmed></ref>。
==疾患との関わり ==
 
== 神経疾患との関わり ==


 コフィリンは酸化ストレスなどでコフィリン分子間のジスルフィド結合が形成され、細胞内にアクチンとの異常なロッド状の複合体を形成する<ref><pubmed>3474653</pubmed></ref><ref name="ref11"><pubmed>22573689</pubmed></ref>。アルツハイマー病におけるアミロイドβペプチドの集積によって形成されるロッドにおいてもコフィリンとアクチンの複合体の存在することが明らかにされている<ref><pubmed>8580423</pubmed></ref><ref name="ref12"><pubmed>10980704</pubmed></ref>。海馬神経細胞に対する[[グルタミン酸]]の過剰な刺激によってもコフィリンによるロッドが形成されることからアルツハイマー病の神経細胞死の原因の一つであることが示唆されている<ref name="ref12" /><ref name="ref11" />。
 コフィリンは酸化ストレスなどでコフィリン分子間のジスルフィド結合が形成され、細胞内にアクチンとの異常なロッド状の複合体を形成する<ref><pubmed>3474653</pubmed></ref><ref name="ref11"><pubmed>22573689</pubmed></ref>。アルツハイマー病におけるアミロイドβペプチドの集積によって形成されるロッドにおいてもコフィリンとアクチンの複合体の存在することが明らかにされている<ref><pubmed>8580423</pubmed></ref><ref name="ref12"><pubmed>10980704</pubmed></ref>。海馬神経細胞に対する[[グルタミン酸]]の過剰な刺激によってもコフィリンによるロッドが形成されることからアルツハイマー病の神経細胞死の原因の一つであることが示唆されている<ref name="ref12" /><ref name="ref11" />。


 コフィリンのリン酸化の活性制御については、LIMキナーゼ遺伝子が[[ウイリアムズ症候群]]に見られる[[空間認知]]機能の障害の原因遺伝子であることが報告されている<ref><pubmed>8689688</pubmed></ref>。  
 コフィリンのリン酸化の活性制御については、LIMキナーゼ遺伝子が[[ウイリアムズ症候群]]に見られる[[空間認知]]機能の障害の原因遺伝子であることが報告されている<ref><pubmed>8689688</pubmed></ref>。  
 動物においては、角膜疾患マウスの原因遺伝子としてADF遺伝子の点変異が同定されている<ref><pubmed>12700171</pubmed></ref>。また、コフィリンの[[ノックアウトマウス]]は胎生致死となる<ref name="ref9"><pubmed>17875668</pubmed></ref>。
 その他に、コフィリンは[[アポトーシス]]の初期において[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]に局在しアポトーシスを誘導することが報告されている<ref><pubmed>14634665</pubmed></ref>。   


== 関連用語  ==
== 関連用語  ==
92行目: 114行目:
== 参考文献  ==
== 参考文献  ==


<references />  
<references />
 
 
(執筆者:大橋一正 担当編集委員:尾藤晴彦)

案内メニュー