16,039
回編集
Takinishimura (トーク | 投稿記録) 細編集の要約なし |
編集の要約なし |
||
1行目: | 1行目: | ||
オートファジーは主要な細胞内分解機構の一つであり、[[wikipedia:JA:細胞質|細胞質]]成分を[[リソソーム]]に輸送し分解する現象である<ref name="ref1"><pubmed> 22078875 </pubmed></ref><ref name="ref2"><pubmed> 21801009 </pubmed></ref>。酵母遺伝学を用いた解析からオートファジー関連分子(Atg分子)が同定されたことで、近年、オートファジー分子機構の解明が急速に進み、その全貌が明らかになりつつある。元来、オートファジーは非選択的な分解機構だと考えられていたが、ミトコンドリアなどのオルガネラ、細胞内細菌、p62タンパク質(sequestosome 1 (SQSTM1)) | 英:autophagy 独:Autophagie 仏:autophagie | ||
[[ | |||
オートファジーは主要な細胞内分解機構の一つであり、[[wikipedia:JA:細胞質|細胞質]]成分を[[リソソーム]]に輸送し分解する現象である<ref name="ref1"><pubmed> 22078875 </pubmed></ref><ref name="ref2"><pubmed> 21801009 </pubmed></ref>。酵母遺伝学を用いた解析からオートファジー関連分子(Atg分子)が同定されたことで、近年、オートファジー分子機構の解明が急速に進み、その全貌が明らかになりつつある。元来、オートファジーは非選択的な分解機構だと考えられていたが、ミトコンドリアなどのオルガネラ、細胞内細菌、p62タンパク質(sequestosome 1 (SQSTM1))などを、選択的に分解していることが分かってきている。オートファジーの最も基本的な生理的役割として、栄養飢餓におけるアミノ酸供給があげられるが、その他にも、細胞内タンパク質やオルガネラの品質管理、細胞内侵入細菌の分解、発生・[[分化]]における細胞内再構築、抗原提示などが知られている。また、病理的観点からも、神経変性疾患やがん、炎症とオートファジーの関連が注目されている。 | |||
==オートファジーとは== | ==オートファジーとは== | ||
[[Image:Autophagy Fig2.jpg|thumb|500px|'''図2 オートファジーの分子機構'''<br>栄養条件下において, オートファジーは[[wikipedia:Mammalian_target_of_rapamycin#mTORC1|mTORC1]]による負の制御を受けている。飢餓条件下では、このmTORC1による抑制が解除されることにより、ULK複合体が活性化して、小胞体膜上に局在化する。その次に、[[ホスファチジルイノシトール#.E3.83.9B.E3.82.B9.E3.83.95.E3.82.A1.E3.83.81.E3.82.B8.E3.83.AB.E3.82.A4.E3.83.8E.E3.82.B7.E3.83.88.E3.83.BC.E3.83.AB3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC.E3.81.A8PI3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC.E3.82.B7.E3.82.B0.E3.83.8A.E3.83.AB.E4.BC.9D.E9.81.94.E7.B5.8C.E8.B7.AF|クラスIII PI3キナーゼ]](phosphatidylinositol 3-kinase)複合体が小胞体膜上へ局在化し、[[ホスファチジルイノシトール#PI.283.29P|ホスファチジルイノシトール-3-一リン酸]] (phosphatidylinositol 3-phosphate, PI(3)P)を産生することで、下流で機能するPI(3)P結合タンパク質のオートファゴソーム形成起点への局在化を促す。その後、[[wikipedia:ATG12|Atg12]]–[[wikipedia:ATG5|Atg5]]-[[wikipedia:ATG16L1|Atg16L1]]、[[wikipedia:MAP1LC3A|LC3]]–[[wikipedia:JA:ホスファチジルエタノールアミン|ホスファチジルエタノールアミン]] (PE) | [[Image:Autophagy Fig1.jpg|thumb|500px|'''図1 オートファジーの過程'''<br>飢餓などによりオートファジーが誘導されると、細胞質に出現した隔離膜が伸張し、細胞質のタンパク質やミトコンドリアを含みながら閉鎖することでオートファゴソームが形成される。オートファゴソームの外膜とリソソームが融合し、オートファゴソームの内膜と取り囲まれた細胞質成分が分解される。オートファジーが生じると、主要な産物として、細胞内タンパク質由来のアミノ酸が供給される。]] | ||
[[Image:Autophagy Fig2.jpg|thumb|500px|'''図2 オートファジーの分子機構'''<br>栄養条件下において, オートファジーは[[wikipedia:Mammalian_target_of_rapamycin#mTORC1|mTORC1]]による負の制御を受けている。飢餓条件下では、このmTORC1による抑制が解除されることにより、ULK複合体が活性化して、小胞体膜上に局在化する。その次に、[[ホスファチジルイノシトール#.E3.83.9B.E3.82.B9.E3.83.95.E3.82.A1.E3.83.81.E3.82.B8.E3.83.AB.E3.82.A4.E3.83.8E.E3.82.B7.E3.83.88.E3.83.BC.E3.83.AB3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC.E3.81.A8PI3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC.E3.82.B7.E3.82.B0.E3.83.8A.E3.83.AB.E4.BC.9D.E9.81.94.E7.B5.8C.E8.B7.AF|クラスIII PI3キナーゼ]](phosphatidylinositol 3-kinase)複合体が小胞体膜上へ局在化し、[[ホスファチジルイノシトール#PI.283.29P|ホスファチジルイノシトール-3-一リン酸]] (phosphatidylinositol 3-phosphate, PI(3)P)を産生することで、下流で機能するPI(3)P結合タンパク質のオートファゴソーム形成起点への局在化を促す。その後、[[wikipedia:ATG12|Atg12]]–[[wikipedia:ATG5|Atg5]]-[[wikipedia:ATG16L1|Atg16L1]]、[[wikipedia:MAP1LC3A|LC3]]–[[wikipedia:JA:ホスファチジルエタノールアミン|ホスファチジルエタノールアミン]] (PE)が[[隔離]]膜上に局在化して隔離膜の伸長が促進され、最終的にオートファゴソームが形成される。[[wikipedia:Sequestosome_1|p62]] (sequestosome 1; SQSTM1)などの選択的基質はLC3 結合ドメイン(LIR motif)と[[ユビキチン]]結合(UBA)ドメインを有するため、ユビキチン(Ub)化された凝集体やミトコンドリアなどと結合し、オートファゴソームによる分解を促すユビキチン受容体として機能する。mTORC1, mammalian target of rapamycin (mTOR) complex 1; LC3, microtubule-associated protein light chain 3; ULK, UNC-51-like kinase; WIPI, WD repeat protein interacting with phosphoinoside]] | |||
オートファジーは主要な細胞内分解機構の一つであり、細胞質成分をリソソームに輸送し分解する現象である。マクロオートファジー、シャペロン介在性オートファジー、マイクロオートファジーの3タイプが報告されている。単に「オートファジー」という場合は、主にマクロオートファジーのことを指す。 | オートファジーは主要な細胞内分解機構の一つであり、細胞質成分をリソソームに輸送し分解する現象である。マクロオートファジー、シャペロン介在性オートファジー、マイクロオートファジーの3タイプが報告されている。単に「オートファジー」という場合は、主にマクロオートファジーのことを指す。 | ||
===マクロオートファジー=== | ===マクロオートファジー=== | ||
まず細胞質中に隔離膜(isolation membrane/phagophore)が出現する。この隔離膜が細胞質成分を取り囲み、二重膜のオートファゴソーム(autophagosome)を形成する。その後、オートファゴソームはリソソームと融合し、オートファゴソームの内膜と隔離した細胞質成分はリソソーム由来の酵素により分解され、一重膜のオートリソソームとなる(図1)。この一連の過程により産生された[[wikipedia:JA:アミノ酸|アミノ酸]]などの分解産物は、[[wikipedia:JA:タンパク質合成|タンパク質合成]]などに再利用される<ref name="ref1" /><ref name="ref2" />。元来、オートファジーは非選択的な分解機構だと考えられていたが、近年、[[ミトコンドリア]](マイトファジー)や[[wikipedia:JA:ペルオキシソーム|ペルオキシソーム]](ペキソファジー)などの[[wikipedia:JA:オルガネラ|オルガネラ]]、細胞内[[wikipedia:JA:細菌|細菌]](ゼノファジー)、[[wikipedia:Sequestosome_1|p62]]タンパク質(sequestosome 1 (SQSTM1))などを、選択的に分解していることが明らかになってきている<ref name="ref3"><pubmed> 20811356 </pubmed></ref>。 | まず細胞質中に隔離膜([[isolation]] membrane/phagophore)が出現する。この隔離膜が細胞質成分を取り囲み、二重膜のオートファゴソーム(autophagosome)を形成する。その後、オートファゴソームはリソソームと融合し、オートファゴソームの内膜と隔離した細胞質成分はリソソーム由来の酵素により分解され、一重膜のオートリソソームとなる(図1)。この一連の過程により産生された[[wikipedia:JA:アミノ酸|アミノ酸]]などの分解産物は、[[wikipedia:JA:タンパク質合成|タンパク質合成]]などに再利用される<ref name="ref1" /><ref name="ref2" />。元来、オートファジーは非選択的な分解機構だと考えられていたが、近年、[[ミトコンドリア]](マイトファジー)や[[wikipedia:JA:ペルオキシソーム|ペルオキシソーム]](ペキソファジー)などの[[wikipedia:JA:オルガネラ|オルガネラ]]、細胞内[[wikipedia:JA:細菌|細菌]](ゼノファジー)、[[wikipedia:Sequestosome_1|p62]]タンパク質(sequestosome 1 (SQSTM1))などを、選択的に分解していることが明らかになってきている<ref name="ref3"><pubmed> 20811356 </pubmed></ref>。 | ||
===シャペロン介在性オートファジー=== | ===シャペロン介在性オートファジー=== | ||
56行目: | 58行目: | ||
=== 細胞内タンパク質の品質管理=== | === 細胞内タンパク質の品質管理=== | ||
栄養が豊富な条件下においても、基底状態レベルのオートファジーが生じており、不要なタンパク質を分解している<ref name="ref1" /><ref><pubmed> 21087849 </pubmed></ref> | 栄養が豊富な条件下においても、基底状態レベルのオートファジーが生じており、不要なタンパク質を分解している<ref name="ref1" /><ref><pubmed> 21087849 </pubmed></ref>。実際、組織特異的オートファジー不全マウスを用いた解析では、ほとんどの組織でp62やユビキチン陽性の凝集体が観察される。特に、あまり[[細胞分裂]]しない神経細胞や肝細胞では、オートファジーを介したタンパク質分解の役割が大きく、神経特異的オートファジー不全マウスでは神経変性が生じ、肝特異的オートファジー不全マウスでは肝肥大や[[wikipedia:JA:肝炎|肝炎]]、[[wikipedia:JA:腫瘍|腫瘍]](良性)が観察されるようになる。興味深いことに、ヒト神経疾患([[アルツハイマー病]]、[[パーキンソン病]]、[[ハンチントン病]]、[[筋萎縮性側索硬化症]]など)の多くで、構造的に類似した凝集体が観察されている。そのため、ラパマイシン誘導体などのオートファジー活性化剤による凝集体蓄積の抑制、[[神経変性疾患]]の発症抑制に期待が集まっている。しかしながら、オートファジーの異常がこれらの疾患の直接の原因であるかどうか、直接的な証拠は得られていない。 | ||
=== 不良ミトコンドリアの分解 (細胞内オルガネラの品質管理)=== | === 不良ミトコンドリアの分解 (細胞内オルガネラの品質管理)=== | ||
76行目: | 78行目: | ||
=== がんにおけるオートファジーの二面性=== | === がんにおけるオートファジーの二面性=== | ||
オートファジーの細胞内品質管理における役割と、栄養(アミノ酸)供給システムとしての役割が、[[wikipedia:JA:がん|がん]]においては相反する作用を発揮する<ref><pubmed> 20056400 </pubmed></ref> | オートファジーの細胞内品質管理における役割と、栄養(アミノ酸)供給システムとしての役割が、[[wikipedia:JA:がん|がん]]においては相反する作用を発揮する<ref><pubmed> 20056400 </pubmed></ref>。一部のオートファジー不全マウスでは、がんの発症率や腫瘍形成能が増加することから、がん初期段階では、オートファジーはがん抑制的に機能している。オートファジーを介した異常タンパク質や異常ミトコンドリアの分解により、酸化[[ストレス]]の減少、慢性[[wikipedia:JA:炎症|炎症]]の抑制、および二次的ながん発症を抑制していると考えられている。一方で、抗がん剤投与時にオートファジー阻害剤を同時投与すると、がん抑制効果が増強される。がん細胞が増殖する段階においては、栄養が枯渇した条件下における生存をオートファジーが促していると考えられている。 | ||
=== クローン病とAtg16L1=== | === クローン病とAtg16L1=== | ||
87行目: | 89行目: | ||
==関連項目== | ==関連項目== | ||
リソソーム | *[[リソソーム]] | ||
== 参考文献 == | == 参考文献 == | ||
94行目: | 95行目: | ||
<references /> | <references /> | ||
(執筆者:西村多喜、水島昇 担当編集者:林 康紀) | |||