246
回編集
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
Masahitoyamagata (トーク | 投稿記録) 細編集の要約なし |
||
11行目: | 11行目: | ||
==はじめに== | ==はじめに== | ||
神経細胞は、[[シナプス]]で適切に結合、情報伝達し、情報処理ユニットとして機能している。シナプス形成は、神経細胞の間で適切な場所で生じるシナプスの構造構築から機能発現までの過程であるが、正常の発生だけでなく、再生や可塑性でも見られ、正常発生でのシナプス形成と基本的には共通するものであると考えられる。しかし、シナプス形成といった場合、発生における化学シナプスの構造構築について議論されることが多いので、本項目もそれを中心に扱う。また、化学シナプスの形成とは本質的に構造の異なる[[電気シナプス]] | 神経細胞は、[[シナプス]]で適切に結合、情報伝達し、情報処理ユニットとして機能している。シナプス形成は、神経細胞の間で適切な場所で生じるシナプスの構造構築から機能発現までの過程であるが、正常の発生だけでなく、再生や可塑性でも見られ、正常発生でのシナプス形成と基本的には共通するものであると考えられる。しかし、シナプス形成といった場合、発生における化学シナプスの構造構築について議論されることが多いので、本項目もそれを中心に扱う。また、化学シナプスの形成とは本質的に構造の異なる[[電気シナプス]](ギャップジャンクション)の形成については、化学シナプス形成との関係性もあると考えられる<ref><pubmed>23237660</pubmed></ref><ref><pubmed>28170151 </pubmed></ref><ref><pubmed>32883654</pubmed></ref>が、本項目では扱わない。 | ||
==シナプス形成の3ステップについての概観== | ==シナプス形成の3ステップについての概観== | ||
45行目: | 45行目: | ||
中枢シナプスと違う神経筋接合部の際立った特徴は、筋線維は多数の細胞が融合した[[多核細胞]](syncytial muscle; multinucleated muscle)となっており、神経筋接合部の直下にはシナプス核(synaptic nucleus)と呼ばれる特化した細胞核が存在することである<ref><pubmed>11498047</pubmed></ref>(図1A)。シナプス核ではアセチルコリンレセプター遺伝子の転写が強く、シナプスから離れた核では転写が低く、アセチルコリンレセプターmRNAを局在化させ、神経筋接合部の近辺でアセチルコリンレセプターが集まる要因にもなっている。これは、神経が、アセチルコリンを使って、アセチルコリンレセプター遺伝子のシナプス外での発現を抑制すると同時に、軸索から放出されるニューレギュリン(neuregulin, ARIA = Acetylcholine Receptor Inducing Activityとも呼ばれた)が、アセチルコリンレセプター遺伝子の転写活性化につながるシグナリング分子となっている<ref><pubmed>9056721</pubmed></ref>。また、発生途中では、アセチルコリンレセプターの組成も変化する。幼若期に特有なδサブユニット遺伝子からε遺伝子への発現の変換がおこる<ref><pubmed>2423878</pubmed></ref>。生体で見られる発生初期のアセチルコリンレセプターのクラスターは単純なプラーク型であるが、最終的には複雑なプレッツェル型になり、神経筋接合部のひだも形成され、シナプス前終末もそれに対応して成熟する<ref><pubmed>15034266</pubmed></ref>。 | 中枢シナプスと違う神経筋接合部の際立った特徴は、筋線維は多数の細胞が融合した[[多核細胞]](syncytial muscle; multinucleated muscle)となっており、神経筋接合部の直下にはシナプス核(synaptic nucleus)と呼ばれる特化した細胞核が存在することである<ref><pubmed>11498047</pubmed></ref>(図1A)。シナプス核ではアセチルコリンレセプター遺伝子の転写が強く、シナプスから離れた核では転写が低く、アセチルコリンレセプターmRNAを局在化させ、神経筋接合部の近辺でアセチルコリンレセプターが集まる要因にもなっている。これは、神経が、アセチルコリンを使って、アセチルコリンレセプター遺伝子のシナプス外での発現を抑制すると同時に、軸索から放出されるニューレギュリン(neuregulin, ARIA = Acetylcholine Receptor Inducing Activityとも呼ばれた)が、アセチルコリンレセプター遺伝子の転写活性化につながるシグナリング分子となっている<ref><pubmed>9056721</pubmed></ref>。また、発生途中では、アセチルコリンレセプターの組成も変化する。幼若期に特有なδサブユニット遺伝子からε遺伝子への発現の変換がおこる<ref><pubmed>2423878</pubmed></ref>。生体で見られる発生初期のアセチルコリンレセプターのクラスターは単純なプラーク型であるが、最終的には複雑なプレッツェル型になり、神経筋接合部のひだも形成され、シナプス前終末もそれに対応して成熟する<ref><pubmed>15034266</pubmed></ref>。 | ||
==中枢神経系のシナプス形成== | ==中枢神経系のシナプス形成== | ||
中枢神経系のシナプスの形成も神経筋接合部のシナプス形成と類似した点が多い。シナプス前部とシナプス後部の間の相互作用は、予め合成されたシナプス構成要素の位置を制御し合うことで、お互いの分化を制御しシナプスを形成する<ref><pubmed>2655146</pubmed></ref><ref><pubmed> | 中枢神経系のシナプスの形成も神経筋接合部のシナプス形成と類似した点が多い。シナプス前部とシナプス後部の間の相互作用は、予め合成されたシナプス構成要素の位置を制御し合うことで、お互いの分化を制御しシナプスを形成する<ref><pubmed>2655146</pubmed></ref><ref><pubmed>14556707</pubmed></ref><ref><pubmed>17417940</pubmed></ref><ref><pubmed>27462810</pubmed></ref><ref><pubmed>29096080</pubmed></ref><ref><pubmed>30359597</pubmed></ref>。中枢シナプスでも、神経筋接合部と同じように、神経伝達物質の受容体がシナプス後膜に集中しているし<ref><pubmed>22046028</pubmed></ref>、シナプス前部におけるシナプス小胞の分子的な成り立ちや蓄積も基本的に同じであるように見える<ref><pubmed>22794257</pubmed></ref>(図1B)。しかし、中枢シナプスの後部は、神経伝達物質受容体の分子種も異なり、その足場となる分子種も神経筋接合部とは大きく異なっている。特に、神経筋接合部では基底膜という細胞外マトリックスであったシナプス間隙(約50nm)の様相は中枢シナプスでは全く異なり、典型的な細胞外マトリックスは存在しない。中枢シナプスでは、約20nmのシナプス間隙で直接接触するシナプス前膜とシナプス後膜の間に存在する細胞間接着がその相互作用の中心であると考えられている<ref><pubmed>14519398</pubmed></ref><ref><pubmed>22278667</pubmed></ref><ref><pubmed>20832286</pubmed></ref><ref><pubmed>30359597</pubmed></ref><ref><pubmed>32359437</pubmed></ref>(図1B)。 | ||
===中枢シナプス形成のオーガナイザー=== | ===中枢シナプス形成のオーガナイザー=== | ||
シナプス前部とシナプス後部をつなぐ細胞接着分子は多数ある([[シナプス接着因子]]の項参考)。それらを代表するものの1つは、シナプス後部の膜に存在するタンパク質であるニューロリギン(neuroligin)である。それに対応するシナプス前膜上の主要なリガンドはニューレキシン(neurexin)である。細胞表面のニューロリギンが、軸索上にシナプス小胞を集積させる能力は、ニューロリギンを強制発現する非神経細胞の上で、神経細胞を培養するin vitroアッセイ系を用いることによって初めて明らかになった<ref><pubmed>10892652</pubmed></ref>(図2B)。しかし、in vitroアッセイ系で見られるニューロリギンなどのシナプス接着分子の作用には、非神経細胞上にデフォールトで発現しているカドヘリンのような別の接着分子の存在が前提になるようである<ref><pubmed>29760652</pubmed></ref>。また、RIM、RIM-BP、liprin、Munc13、ELKSを含むいくつかのタンパク質ファミリーが、シナプス前部の重要な足場分子として同定されており<ref><pubmed>22794257</pubmed></ref>、シナプス前部表面のLAR-RPTPs(受容体型膜貫通チロシンホスファターゼ)を通じてアクティブゾーンを形成に預かる<ref><pubmed>23916315</pubmed></ref>。 | シナプス前部とシナプス後部をつなぐ細胞接着分子は多数ある([[シナプス接着因子]]の項参考)。それらを代表するものの1つは、シナプス後部の膜に存在するタンパク質であるニューロリギン(neuroligin)である。それに対応するシナプス前膜上の主要なリガンドはニューレキシン(neurexin)である。細胞表面のニューロリギンが、軸索上にシナプス小胞を集積させる能力は、ニューロリギンを強制発現する非神経細胞の上で、神経細胞を培養するin vitroアッセイ系を用いることによって初めて明らかになった<ref><pubmed>10892652</pubmed></ref>(図2B)。しかし、in vitroアッセイ系で見られるニューロリギンなどのシナプス接着分子の作用には、非神経細胞上にデフォールトで発現しているカドヘリンのような別の接着分子の存在が前提になるようである<ref><pubmed>29760652</pubmed></ref>。また、RIM、RIM-BP、liprin、Munc13、ELKSを含むいくつかのタンパク質ファミリーが、シナプス前部の重要な足場分子として同定されており<ref><pubmed>22794257</pubmed></ref>、シナプス前部表面のLAR-RPTPs(受容体型膜貫通チロシンホスファターゼ)を通じてアクティブゾーンを形成に預かる<ref><pubmed>23916315</pubmed></ref>。 |