「プロモーター」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
 
(2人の利用者による、間の5版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/satoshikida 喜田 聡]、[http://researchmap.jp/serita/?lang=japanese 芹田龍郎]</font><br>
<font size="+1">[http://researchmap.jp/satoshikida 喜田 聡]、[http://researchmap.jp/serita/?lang=japanese 芹田龍郎]</font><br>
''東京農業大学 応用生物科学部バイオサイエンス学科''<br>
''東京農業大学 応用生物科学部バイオサイエンス学科''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年12月9日 原稿完成日:2013年月日<br>
DOI:<selfdoi /> 原稿受付日:2013年12月9日 原稿完成日:2014年2月8日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>
</div>
13行目: 13行目:
[[ファイル:Kida Fig.1.png|thumb|right|300px| '''図1 プロモーターの概略'''<br>転写調節因子、転写仲介因子の働きにより、TFIID中心とする基本転写因子群とRNA pol IIがTATAやイニシエーターを標的としてプロモーター上に誘引され、転写開始複合体を形成し、転写反応が開始される。
[[ファイル:Kida Fig.1.png|thumb|right|300px| '''図1 プロモーターの概略'''<br>転写調節因子、転写仲介因子の働きにより、TFIID中心とする基本転写因子群とRNA pol IIがTATAやイニシエーターを標的としてプロモーター上に誘引され、転写開始複合体を形成し、転写反応が開始される。
]]
]]
 プロモーターとはDNAにおける遺伝子の転写制御を行う領域である。
 プロモーターとはDNAにおける遺伝子の転写制御を行う領域である(図1)。


 [[真核生物]]において、狭義では、転写基本因子群とRNAポリメラーゼが結合するDNA領域をプロモーターと呼ぶ<ref name=ref1>'''Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick'''<br>Genes XI, 11 edition<br>''Jones & Bartlett Learning, Burlington, 2013''<br></ref>。
 [[真核生物]]において、狭義では、転写基本因子群とRNAポリメラーゼが結合するDNA領域をプロモーターと呼ぶ<ref name=ref1>'''Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick'''<br>Genes XI, 11 edition<br>''Jones & Bartlett Learning, Burlington, 2013''<br></ref>。


 一方、広義では、この領域を[[コアプロモーター]]と呼び、[[転写調節因子]]群が結合する[[調節エレメント]]も含めてプロモーターと呼ぶことも多い。
 一方、広義では、この領域を[[コアプロモーター]]と呼び、[[転写調節因子]]群が結合する[[調節エレメント]]も含めてプロモーターと呼ぶことも多い。コアプロモーターの上流あるいは下流には様々な転写調節因子が結合して正負の転写制御が行われる調節エレメントが存在している。


 真核生物の場合、[[RNA合成酵素]]である[[RNAポリメラーゼ]]は[[PolI]]、[[PolII]]、[[PolII]]の3種類存在し、3つのクラスのプロモーターが存在している。PolIが働くクラスIのプロモーターからは[[rRNA]]、PolIIが働くクラスIIのプロモーターからは[[mRNA]]、PolIIIが働くクラスIIIのプロモーターからは[[tRNA]]を中心とする[[低分子RNA]]が転写される<ref name=ref1 />。特に、mRNAの転写制御を担うクラスIIのプロモーターに関しては、各遺伝子がそれぞれ異なる転写制御を受けるため、多様な転写調節機構が存在している。コアプロモーターの上流あるいは下流には様々な転写調節因子が結合して正負の転写制御が行われる調節エレメントが存在している。
== コアプロモーター ==
 転写基本因子とRNAポリメラーゼが結合して転写開始複合体が形成される、転写開始に必要最小限のDNA領域であり、転写開始点の前後の数十base pair (bp)程度の大きさである<ref name=ref1 />。
===分類===
 真核生物の場合、[[RNA合成酵素]]である[[RNAポリメラーゼ]]は[[PolI]]、[[PolII]]、[[PolII]]の3種類存在し、3つのクラスのプロモーターが存在している。PolIが働くクラスIのプロモーターからは[[rRNA]]、PolIIが働くクラスIIのプロモーターからは[[mRNA]]、PolIIIが働くクラスIIIのプロモーターからは[[tRNA]]を中心とする[[低分子RNA]]が転写される<ref name=ref1 />。特に、mRNAの転写制御を担うクラスIIのプロモーターに関しては、各遺伝子がそれぞれ異なる転写制御を受けるため、多様な転写調節機構が存在している。


== コアプロモーター ==
 クラスIIのプロモーターには、転写開始点を含む[[イニシエーター]]、また、転写開始点上流に[[TATAボックス]]やTFIIB認識領域などが存在する<ref name=ref1 />。
 転写基本因子とRNAポリメラーゼが結合して転写開始複合体が形成される、転写開始に必要最小限のDNA領域であり、転写開始点の前後の数十base pair (bp)程度の大きさである<ref name=ref1 />。クラスIIのプロモーターには、転写開始点を含む[[イニシエーター]]、また、転写開始点上流に[[TATAボックス]]やTFIIB認識領域などが存在する<ref name=ref1 />。


=== 転写基本因子 ===
=== 転写基本因子 ===
28行目: 30行目:


===TATAボックスとTATAレスプロモーター ===
===TATAボックスとTATAレスプロモーター ===
 TATAボックスとは転写開始点の約25bp程度上流に存在する塩基配列(TATAA)であり、TFIIDのサブユニットの一つTBPによって認識される<ref name=ref1 /><ref name=ref7>'''Tom Strachan, Andrew Read'''<br>Human Molecular Genetics, Fourth Edition<br>''Garland Science, New York, 2010''</ref>。しかし、クラスIIプロモーターにおいて、TATAボックスを有するプロモーターは意外に少なく([[ヒト]]では約30%)、これ以外はTATAボックスを持たずに、イニシエーターと下流プロモーター配列 (downstream promoter element; DPE)を有するTATAレスプロモーターであり、GCボックスを有することも多い<ref name=ref1 /><ref name=ref7 />。TATAレスプロモーターはハウスキーピング遺伝子に多く見られ、複数の転写開始点を持つことも多い<ref name=ref7 />。TATAボックスを有するプロモーターでは転写制御が厳格かつ劇的に行われる傾向が高いのに対して、TATAレスプロモーターには恒常的な活性を示すものが多い。
 TATAボックスとは[[転写開始点]]の約25bp程度上流に存在する塩基配列(TATAA)であり、TFIIDのサブユニットの一つTBPによって認識される<ref name=ref1 /><ref name=ref7>'''Tom Strachan, Andrew Read'''<br>Human Molecular Genetics, Fourth Edition<br>''Garland Science, New York, 2010''</ref>。しかし、[[クラスIIプロモーター]]において、TATAボックスを有するプロモーターは意外に少なく([[ヒト]]では約30%)、これ以外はTATAボックスを持たずに、[[イニシエーター]]と[[下流プロモーター配列]] (downstream promoter element; DPE)を有するTATAレスプロモーターであり、[[GCボックス]]を有することも多い<ref name=ref1 /><ref name=ref7 />。TATAレスプロモーターは[[ハウスキーピング遺伝子]]に多く見られ、複数の転写開始点を持つことも多い<ref name=ref7 />。TATAボックスを有するプロモーターでは転写制御が厳格かつ劇的に行われる傾向が高いのに対して、TATAレスプロモーターには恒常的な活性を示すものが多い。


== 調節エレメント ==
== 調節エレメント ==
42行目: 44行目:


=== エピジェネティクス制御 ===
=== エピジェネティクス制御 ===
[[ファイル:Kida Fig.2.png|thumb|300px|right| '''図2. エピジェネティクス転写制御'''<br>ヒストンテールがメチル化、アセチル化、リン酸化などの翻訳後修飾を受けて、クロマチン構造のリモデリングが引き起こされる。一方、プロモーター領域DNAのCpGアイランドがメチル化修飾を受けると、そのプロモーターからの転写が抑制される。このようなクロマチンリモデリングは転写制御の重要なステップとなっている)。以上のような、クロマチンリモデリングやDNAメチル化はエピジェネティクス転写制御と呼ばれる。]]
[[ファイル:Kida Fig.2.png|thumb|300px|right| '''図2. エピジェネティクス転写制御'''<br>ヒストンテールがメチル化、アセチル化、リン酸化などの翻訳後修飾を受けて、クロマチン構造のリモデリングが引き起こされる。一方、プロモーター領域DNAのCpGアイランドがメチル化修飾を受けると、そのプロモーターからの転写が抑制される。このようなクロマチンリモデリングは転写制御の重要なステップとなっている。以上のような、クロマチンリモデリングやDNAメチル化はエピジェネティクス転写制御と呼ばれる。]]
 転写制御は転写調節因子、転写基本因子、転写仲介因子やコファクターの間でのタンパク質間相互作用によってのみ制御されるわけではない。プロモーター周辺領域の[[エピジェネティクス]]制御も転写制御に必須であることが1990年代の中頃から明らかにされた<ref name=ref1 /><ref name=ref7 />。具体的には、DNAと結合して[[クロマチン]]構造を形成する[[ヒストン]]群の翻訳後修飾、すなわち、[[アセチル化]](脱アセチル化)、[[メチル化]](脱メチル化)、リン酸化([[脱リン酸化]])を介して、プロモーター付近のクロマチン構造の変換(クロマチンリモデリンング)が行われる。このクロマチンリモデリングがプロモーターからの転写開始の効率、すなわち、転写を制御するタンパク質群のプロモーター領域への集合に大きく影響を及ぼしていると考えられている<ref name=ref1 /><ref name=ref7 />。以上のようなヒストンの[[翻訳後修飾]]にも多様性が観察されることから、ヒストンの修飾状態は「[[ヒストンコード]]」と呼ばれ、DNAの塩基配列情報の如く、ヒストンの修飾パターンが何らかの暗号的意味を持つのではないかと考えられている<ref name=ref15><pubmed> 11498575 </pubmed></ref>。また、[[CLOCK]]などのアクティベーター<ref name=ref16><pubmed> 16678094 </pubmed></ref>、CBP/p300、[[PCAF]]などのコアクティベーターは[[ヒストンアセチル化酵素]]活性を有すること<ref name=ref17><pubmed> 9296499 </pubmed></ref><ref name=ref18><pubmed> 11559745 </pubmed></ref>、一方、[[Sin3]]などのコリプレッサーは[[ヒストン脱アセチル化酵素]]活性を示すことが明らかにされており<ref name=ref19><pubmed> 9139820 </pubmed></ref>、このような[[転写因子]]群がプロモーター付近のヒストンリモデリングを直接制御する。
 転写制御は転写調節因子、転写基本因子、転写仲介因子やコファクターの間でのタンパク質間相互作用によってのみ制御されるわけではない。プロモーター周辺領域の[[エピジェネティクス]]制御も転写制御に必須であることが1990年代の中頃から明らかにされた<ref name=ref1 /><ref name=ref7 />。具体的には、DNAと結合して[[クロマチン]]構造を形成する[[ヒストン]]群の翻訳後修飾、すなわち、[[アセチル化]](脱アセチル化)、[[メチル化]](脱メチル化)、リン酸化([[脱リン酸化]])を介して、プロモーター付近のクロマチン構造の変換(クロマチンリモデリンング)が行われる(図2)。このクロマチンリモデリングがプロモーターからの転写開始の効率、すなわち、転写を制御するタンパク質群のプロモーター領域への集合に大きく影響を及ぼしていると考えられている<ref name=ref1 /><ref name=ref7 />。以上のようなヒストンの[[翻訳後修飾]]にも多様性が観察されることから、ヒストンの修飾状態は「[[ヒストンコード]]」と呼ばれ、DNAの塩基配列情報の如く、ヒストンの修飾パターンが何らかの暗号的意味を持つのではないかと考えられている<ref name=ref15><pubmed> 11498575 </pubmed></ref>。また、[[CLOCK]]などのアクティベーター<ref name=ref16><pubmed> 16678094 </pubmed></ref>、CBP/p300、[[PCAF]]などのコアクティベーターは[[ヒストンアセチル化酵素]]活性を有すること<ref name=ref17><pubmed> 9296499 </pubmed></ref><ref name=ref18><pubmed> 11559745 </pubmed></ref>、一方、[[Sin3]]などのコリプレッサーは[[ヒストン脱アセチル化酵素]]活性を示すことが明らかにされており<ref name=ref19><pubmed> 9139820 </pubmed></ref>、このような[[転写因子]]群がプロモーター付近のヒストンリモデリングを直接制御する。


 一方、このエピジェネティクス制御はヒストンばかりではなく、DNAにおいても観察される。DNAのメチル化はCpGアイランドのシトシンに多く観察されており、メチル化に富んだプロモーターは不活性化状態となり、その遺伝子からの転写が抑制される<ref name=ref1 /><ref name=ref7 />。DNAメチル化による転写不活性化はインプリンティング、X染色体不活性化を代表として、恒常的な転写制御に関与するものと考えられている。
 一方、このエピジェネティクス制御はヒストンばかりではなく、DNAにおいても観察される。DNAのメチル化はCpGアイランドのシトシンに多く観察されており、メチル化に富んだプロモーターは不活性化状態となり、その遺伝子からの転写が抑制される<ref name=ref1 /><ref name=ref7 />。DNAメチル化による転写不活性化はインプリンティング、X染色体不活性化を代表として、恒常的な転写制御に関与するものと考えられている。
51行目: 53行目:
==脳科学研究領域におけるプロモーターの応用==
==脳科学研究領域におけるプロモーターの応用==


 αCaMKIIプロモーターは[[トランスジェニック動物|遺伝子操作マウス]]作製に広く利用されている<ref name=ref14 />。これ以外には、外来遺伝子の発現を[[GABA]]ニューロンに限定されるための[[GAD67]]プロモーター<ref name=ref20><pubmed> 16088032 </pubmed></ref>、[[ドーパミン]]産生ニューロンに限定させるための[[チロシン水酸化酵素]]プロモーター<ref name=ref21><pubmed> 22153370 </pubmed></ref>、[[ドーパミン]][[D1受容体]]あるいは[[D2受容体]]発現ニューロンに限定させるためのD1及びD2受容体プロモーターなどが利用されている<ref name=ref22><pubmed> 20613723 </pubmed></ref>。一方、神経活動依存的遺伝子発現の活性化をモニターする、あるいは、遺伝子発現が誘導されたニューロンを標識するためのツールとして、[[c−fos]]遺伝子あるいはArc遺伝子のプロモーターが利用されている<ref name=ref8><pubmed> 11559745 </pubmed></ref><ref name=ref23><pubmed> 17761885 </pubmed></ref>。以上のプロモーター群は脳科学領域における強力な遺伝学的手法のツールとなっている。
 αCaMKIIプロモーターは[[トランスジェニック動物|遺伝子操作マウス]]作製に広く利用されている<ref name=ref14 />。これ以外には、外来遺伝子の発現を[[GABA]]ニューロンに限定されるための[[GAD67]]プロモーター<ref name=ref20><pubmed> 16088032 </pubmed></ref>、[[ドーパミン]]産生ニューロンに限定させるための[[チロシン水酸化酵素]]プロモーター<ref name=ref21><pubmed> 22153370 </pubmed></ref>、[[ドーパミン]][[D1受容体]]あるいは[[D2受容体]]発現ニューロンに限定させるためのD1及びD2受容体プロモーターなどが利用されている<ref name=ref22><pubmed> 20613723 </pubmed></ref>。一方、神経活動依存的遺伝子発現の活性化をモニターする、あるいは、遺伝子発現が誘導されたニューロンを標識するためのツールとして、[[c−fos]]遺伝子あるいはArc遺伝子のプロモーターが利用されている<ref name=ref18><pubmed> 11559745 </pubmed></ref><ref name=ref23><pubmed> 17761885 </pubmed></ref>。以上のプロモーター群は脳科学領域における強力な遺伝学的手法のツールとなっている。


==関連項目==
==関連項目==