17,548
回編集
細編集の要約なし |
細 (→脳、神経系組織) |
||
| (同じ利用者による、間の5版が非表示) | |||
| 40行目: | 40行目: | ||
|- | |- | ||
| rowspan="6" | in vivo (成体) | | rowspan="6" | in vivo (成体) | ||
| アストロサイト || エズリン, ラディキシン, マーリン || <ref name= | | アストロサイト || エズリン, ラディキシン, マーリン || <ref name=Derouiche2001><pubmed>11746770</pubmed></ref><ref name=Toledo2018><pubmed>29715273</pubmed></ref> | ||
|- | |- | ||
| ミクログリア || ラディキシン, モエシン || <ref name= | | ミクログリア || ラディキシン, モエシン || <ref name=Persson2013a><pubmed>23440885</pubmed></ref><ref name=Johnson2002><pubmed>12111362</pubmed></ref> | ||
|- | |- | ||
| オリゴデンドロサイト || マーリン || <ref name= | | オリゴデンドロサイト || マーリン ||<ref name=Toledo2018><pubmed>29715273</pubmed></ref> | ||
|- | |- | ||
| 神経細胞 || マーリン || <ref name= | | 神経細胞 || マーリン || <ref name=Gronholm2003><pubmed>12896975</pubmed></ref> | ||
|- | |- | ||
| 上衣細胞 || エズリン || <ref name= | | 上衣細胞 || エズリン || <ref name=Derouiche2001><pubmed>11746770</pubmed></ref> | ||
|- | |- | ||
| 血管内皮細胞 || モエシン || <ref name= | | 血管内皮細胞 || モエシン || <ref name=Johnson2002><pubmed>12111362</pubmed></ref> | ||
|- | |- | ||
| rowspan="3" | in vivo (分化過程) | | rowspan="3" | in vivo (分化過程) | ||
| 神経芽細胞 (吻側移動経路) || ラディキシン || <ref name= | | 神経芽細胞 (吻側移動経路) || ラディキシン || <ref name=Persson2010><pubmed>20109539</pubmed></ref><ref name=Persson2013b><pubmed>24065889</pubmed></ref> | ||
|- | |- | ||
| オリゴデンドロサイト前駆細胞 (吻側移動経路) || ラディキシン || <ref name= | | オリゴデンドロサイト前駆細胞 (吻側移動経路) || ラディキシン || <ref name=Persson2010><pubmed>20109539</pubmed></ref> | ||
|- | |- | ||
| アストロサイト || エズリン || <ref name= | | アストロサイト || エズリン || <ref name=Cleary2006><pubmed>16996217</pubmed></ref> | ||
|- | |- | ||
| in vitro||海馬錐体初代培養神経細胞 || エズリン, ラディキシン, モエシン || <ref name= | | in vitro||海馬錐体初代培養神経細胞 || エズリン, ラディキシン, モエシン || <ref name=Paglini1998><pubmed>9786954</pubmed></ref> | ||
|} | |} | ||
===その他の組織=== | ===その他の組織=== | ||
エズリンは、[[胃]]の[[壁細胞]]の[[管腔側膜]]や、[[小腸]]、[[大腸]]の刷子縁膜で高発現しており、[[腎臓]]の[[近位尿細管]]の刷子縁膜や[[糸球体]]、[[肺]]や[[気管支]]などの[[呼吸上皮]]にも発現する<ref name=Bretscher1983 /><ref name=Hanzel1991><pubmed>1831124</pubmed></ref><ref name=Yoshida2016><pubmed>27108882</pubmed></ref><ref name=Hugo1998><pubmed>9853258</pubmed></ref><ref name=Hatano2013><pubmed>22895514</pubmed></ref><ref name=Laoukili2001><pubmed>11748265</pubmed></ref>。 | エズリンは、[[胃]]の[[壁細胞]]の[[管腔側膜]]や、[[小腸]]、[[大腸]]の刷子縁膜で高発現しており、[[腎臓]]の[[近位尿細管]]の刷子縁膜や[[糸球体]]、[[肺]]や[[気管支]]などの[[呼吸上皮]]にも発現する<ref name=Bretscher1983 /><ref name=Hanzel1991><pubmed>1831124</pubmed></ref><ref name=Yoshida2016><pubmed>27108882</pubmed></ref><ref name=Hugo1998><pubmed>9853258</pubmed></ref><ref name=Hatano2013><pubmed>22895514</pubmed></ref><ref name=Laoukili2001><pubmed>11748265</pubmed></ref>。 | ||
| 80行目: | 81行目: | ||
[[膜輸送体]]とも直接に結合し、アクチン細胞骨格との相互作用を介して、頂端膜で安定に発現させる。たとえば、エズリンは、FERM ドメインで[[Na+/H+交換輸送体1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体1]] ([[NHE1]]) のC末端の細胞質領域と結合する<ref name=Denker2000><pubmed>11163215</pubmed></ref>。また、がんにおける[[多剤耐性]]機構に重要な因子となる[[P糖タンパク質]] ([[P-gp]]) とも同様に結合し、P-gpの細胞膜発現と基質輸送能を高める<ref name=Luciani2002><pubmed>11781249</pubmed></ref>。ラディキシンは、[[multi-drug resistance protein 2]] ([[MRP2]])のC末端の細胞質ドメインに直接結合し、[[胆管]]への[[抱合型ビリルビン]]の分泌に関与する<ref name=Kikuchi2002><pubmed>12068294</pubmed></ref>。 モエシンは、FERMドメインで、[[Na+/K+/2Cl-共輸送体2|Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup>共輸送体2]] ([[NKCC2]]) のC末端領域と結合することで、NKCC2を頂端膜で安定に発現させる<ref name=Carmosino2012><pubmed>22708623</pubmed></ref>。 | [[膜輸送体]]とも直接に結合し、アクチン細胞骨格との相互作用を介して、頂端膜で安定に発現させる。たとえば、エズリンは、FERM ドメインで[[Na+/H+交換輸送体1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体1]] ([[NHE1]]) のC末端の細胞質領域と結合する<ref name=Denker2000><pubmed>11163215</pubmed></ref>。また、がんにおける[[多剤耐性]]機構に重要な因子となる[[P糖タンパク質]] ([[P-gp]]) とも同様に結合し、P-gpの細胞膜発現と基質輸送能を高める<ref name=Luciani2002><pubmed>11781249</pubmed></ref>。ラディキシンは、[[multi-drug resistance protein 2]] ([[MRP2]])のC末端の細胞質ドメインに直接結合し、[[胆管]]への[[抱合型ビリルビン]]の分泌に関与する<ref name=Kikuchi2002><pubmed>12068294</pubmed></ref>。 モエシンは、FERMドメインで、[[Na+/K+/2Cl-共輸送体2|Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup>共輸送体2]] ([[NKCC2]]) のC末端領域と結合することで、NKCC2を頂端膜で安定に発現させる<ref name=Carmosino2012><pubmed>22708623</pubmed></ref>。 | ||
また、エズリンは、足場タンパク質を介して膜輸送体や受容体と間接的に複合体を形成する。足場タンパク質である[[Na+/H+交換輸送体制御因子1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体制御因子1]] ([[NHERF1]]) および2は、2つの[[PDZドメイン|PDZ]] ([[PSD-95]]、[[Discs-large]]、[[ZO-1]]) ドメインをもつ一方、C末端でERMタンパク質のFERMドメインに結合する<ref name=Reczek1997 ./><ref name=Takeda2003 /> | また、エズリンは、足場タンパク質を介して膜輸送体や受容体と間接的に複合体を形成する。足場タンパク質である[[Na+/H+交換輸送体制御因子1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体制御因子1]] ([[NHERF1]]) および2は、2つの[[PDZドメイン|PDZ]] ([[PSD-95]]、[[Discs-large]]、[[ZO-1]]) ドメインをもつ一方、C末端でERMタンパク質のFERMドメインに結合する<ref name=Reczek1997 ./><ref name=Takeda2003 />。NHERF1のPDZドメインは、[[クロライドチャネル]]である[[嚢胞性線維症膜コンダクタンス制御因子]] ([[CFTR]])、[[Na+/H+交換輸送体3|Na<sup>+</sup>/H<sup>+</sup>交換輸送体3]] ([[NHE3]]) 、[[Na+/リン酸共輸送体2a|Na<sup>+</sup>/リン酸共輸送体2a]] ([[Npt2a]])、[[グルタミン酸輸送体]][[GLAST]]などの膜輸送体のほか、[[β2アドレナリン受容体|β<sub>2</sub>アドレナリン受容体]]([[β2AR|β<sub>2</sub>AR]])のC末端に存在するPDZ結合モチーフと結合する。その結果、膜輸送体や受容体がアクチン細胞骨格に結合して細胞膜で安定に発現する<ref name=Hatano2013 /><ref name=Short1998><pubmed>9677412</pubmed></ref><ref name=Lamprecht1998><pubmed>9792717</pubmed></ref><ref name=Lee2007><pubmed>17048262</pubmed></ref><ref name=Kawaguchi2022b><pubmed>35132996</pubmed></ref>('''図2''')。 | ||
[[ファイル:Asano ERM proteins Fig3.png|サムネイル|'''図3. ERMタンパク質によるRhoファミリー低分子量Gタンパク質活性の制御'''<br>GTP結合型のRhoファミリー低分子量Gタンパク質は活性型であり、下流のエフェクターと相互作用する。GDP結合型のRhoファミリー低分子量Gタンパク質は不活性型であり、下流のエフェクターとの親和性が大幅に低下している。Rho-GEFは、結合したGDPからGTPへの交換を誘導し、Rhoファミリー低分子量Gタンパク質を活性化する。Rho-GDIは、不活性型のGDP結合型Rhoファミリー低分子量Gタンパク質と結合し、安定化させることで活性型への変換を妨げる。ERMタンパク質はRho-GEFとFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質においてGDPからGTPへの交換を促進することで活性化する (図中(a))。また、Rho-GDIともFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質からのRho-GDIの解離を促進することで活性化する (図中(b))。]] | [[ファイル:Asano ERM proteins Fig3.png|サムネイル|'''図3. ERMタンパク質によるRhoファミリー低分子量Gタンパク質活性の制御'''<br>GTP結合型のRhoファミリー低分子量Gタンパク質は活性型であり、下流のエフェクターと相互作用する。GDP結合型のRhoファミリー低分子量Gタンパク質は不活性型であり、下流のエフェクターとの親和性が大幅に低下している。Rho-GEFは、結合したGDPからGTPへの交換を誘導し、Rhoファミリー低分子量Gタンパク質を活性化する。Rho-GDIは、不活性型のGDP結合型Rhoファミリー低分子量Gタンパク質と結合し、安定化させることで活性型への変換を妨げる。ERMタンパク質はRho-GEFとFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質においてGDPからGTPへの交換を促進することで活性化する (図中(a))。また、Rho-GDIともFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質からのRho-GDIの解離を促進することで活性化する (図中(b))。]] | ||
=== ADPリボシル化因子ファミリーGTPaseの調節 === | === ADPリボシル化因子ファミリーGTPaseの調節 === | ||
エズリンは[[胃壁細胞]]の管腔側膜に発現する。胃壁細胞を[[ヒスタミン]]処理すると、[[ | エズリンは[[胃壁細胞]]の管腔側膜に発現する。胃壁細胞を[[ヒスタミン]]処理すると、[[cAMP依存性タンパク質リン酸化酵素]] ([[PKA]]) によってエズリンのN末端側のSer66がリン酸化を受ける。この際にエズリンは[[ADPリボシル化因子6]] ([[ADP ribosylation factor-6]], [[ARF6]]) GTPaseおよび[[ARF GTPase活性化タンパク質]]である[[ACAP4]]と結合し、胃酸分泌細胞内の[[プロトンポンプ]]を含む細管小胞と管腔側膜との融合を促して酸分泌を開始する<ref name=Ding2010><pubmed>20360010</pubmed></ref>。実際にエズリンを[[ノックダウン]]した[[マウス]]では、細管小胞と管腔側膜との融合はおこらず、胃酸の分泌が傷害される<ref name=Tamura2005><pubmed>15809309</pubmed></ref>。 | ||
=== Rhoファミリー低分子量Gタンパク質の調節 === | === Rhoファミリー低分子量Gタンパク質の調節 === | ||
| 119行目: | 120行目: | ||
ラディキシンは神経細胞の[[成長円錐]]の形成において重要な役割を担う。たとえばニワトリの神経培養細胞の培地から[[神経成長因子]] (NGF)を除くと、成長円錐の急速な崩壊と同時にラディキシンの発現は大幅に低下する。一方、神経成長因子を再添加すると成長円錐が再形成されると同時にラディキシンの成長円錐での再局在化が引き起こされる<ref name=GonzalezAgosti1996><pubmed>8769724</pubmed></ref>。 | ラディキシンは神経細胞の[[成長円錐]]の形成において重要な役割を担う。たとえばニワトリの神経培養細胞の培地から[[神経成長因子]] (NGF)を除くと、成長円錐の急速な崩壊と同時にラディキシンの発現は大幅に低下する。一方、神経成長因子を再添加すると成長円錐が再形成されると同時にラディキシンの成長円錐での再局在化が引き起こされる<ref name=GonzalezAgosti1996><pubmed>8769724</pubmed></ref>。 | ||
また、海馬神経細胞の初代培養における[[アンチセンスオリゴヌクレオチド]]を用いたERMファミリーの発現抑制実験では、ラディキシンとモエシンを二重発現抑制すると、成長円錐の劇的な減少や放射状条線の消失、糸状仮足数の減少および長さの増加など、成長円錐の形成異常が認められる。他方、エズリンとラディキシン、エズリンとモエシンを二重発現抑制しても、成長円錐の形態や大きさや糸状仮足の数、細胞骨格に変化は見られない<ref name=Paglini1998 /> | また、海馬神経細胞の初代培養における[[アンチセンスオリゴヌクレオチド]]を用いたERMファミリーの発現抑制実験では、ラディキシンとモエシンを二重発現抑制すると、成長円錐の劇的な減少や放射状条線の消失、糸状仮足数の減少および長さの増加など、成長円錐の形成異常が認められる。他方、エズリンとラディキシン、エズリンとモエシンを二重発現抑制しても、成長円錐の形態や大きさや糸状仮足の数、細胞骨格に変化は見られない<ref name=Paglini1998 />。タイムラプス[[Video Enhanced Contrast-微分干渉顕微鏡]] ([[VEC-DIC顕微鏡]])で成長円錐の拡大を解析すると、ラディキシンとモエシンを二重発現抑制すると、軸索伸長速度の劇的な遅延が見られ、成長円錐の拡大が傷害される<ref name=Paglini1998 />。 | ||
また、神経軸索の誘因/反発因子として働く分泌性タンパク質Netrin-1は、受容体である[[deleted in colorectal cancer]] ([[DCC]]) に結合して、[[cAMP依存性タンパク質リン酸化酵素]] ([[cAMP-dependent protein kinase]], [[protein kinase A]], [[PKA]])依存的に神経細胞発達に関与する。PKAの足場となるAキナーゼアンカータンパク質 (AKAP)機能を欠損したラディキシン、エズリンとモエシンの変異体を導入すると、成長円錐において特徴的なラメラ構造やラメリポディアが消失する。これにラディキシンを発現させると成長円錐の形態を回復させる<ref name=Deming2015><pubmed>25575591</pubmed></ref>('''図4''')。 | また、神経軸索の誘因/反発因子として働く分泌性タンパク質Netrin-1は、受容体である[[deleted in colorectal cancer]] ([[DCC]]) に結合して、[[cAMP依存性タンパク質リン酸化酵素]] ([[cAMP-dependent protein kinase]], [[protein kinase A]], [[PKA]])依存的に神経細胞発達に関与する。PKAの足場となるAキナーゼアンカータンパク質 (AKAP)機能を欠損したラディキシン、エズリンとモエシンの変異体を導入すると、成長円錐において特徴的なラメラ構造やラメリポディアが消失する。これにラディキシンを発現させると成長円錐の形態を回復させる<ref name=Deming2015><pubmed>25575591</pubmed></ref>('''図4''')。 | ||
| 126行目: | 127行目: | ||
エズリンは[[ネトリン-1]]依存的にDCCと結合し、自らがRhoキナーゼによってリン酸化を受けて、軸索の伸長を活性化する ('''図4''')。初代培養神経細胞においてエズリンの機能を欠損させると、突起伸長は阻害を受ける<ref name=AntoineBertrand2011><pubmed>21849478</pubmed></ref>。 | エズリンは[[ネトリン-1]]依存的にDCCと結合し、自らがRhoキナーゼによってリン酸化を受けて、軸索の伸長を活性化する ('''図4''')。初代培養神経細胞においてエズリンの機能を欠損させると、突起伸長は阻害を受ける<ref name=AntoineBertrand2011><pubmed>21849478</pubmed></ref>。 | ||
また、エズリンの発現が野生型マウスの5%以下まで抑制されたノックダウンマウス ( | また、エズリンの発現が野生型マウスの5%以下まで抑制されたノックダウンマウス (Vil2<sup>kd/kd</sup> マウス) 胚由来の初代培養神経細胞では、野生型マウスと比較して神経突起の形成障害が見られる。Vil2<sup>kd/kd</sup> マウス神経細胞では、RhoA活性の上昇およびミオシン軽鎖2 (MLC2)のリン酸化が認められ、[[ミオシンII]]や[[Rho関連コイルドコイル含有キナーゼ]]を阻害すると神経細胞の神経突起形成が回復する<ref name=Matsumoto2014><pubmed>25144196</pubmed></ref>。 | ||
=== アストロサイトPAP構造とグルタミン酸輸送 === | === アストロサイトPAP構造とグルタミン酸輸送 === | ||
| 148行目: | 149行目: | ||
エズリンはがん細胞の浸潤や転移に関連し、一方、マーリンは腫瘍増殖抑制に関わる。 | エズリンはがん細胞の浸潤や転移に関連し、一方、マーリンは腫瘍増殖抑制に関わる。 | ||
==== エズリンと癌 ==== | ==== エズリンと癌 ==== | ||
一般にエズリンの発現が高い程、予後が悪く生存率は低下する。その原因の一つとしてがんの転移能が上昇することがある。エズリンが転移に関わるメカニズムの例として、CD44とアクチン細胞骨格とのクロスリンクや、EGF/EGFRを介した上皮間葉転換が挙げられる。CD44v6 (変異型エクソンv6配列を含むCD44アイソフォーム) はHGF/c-Metの共受容体としてエズリンと結合し、アクチン細胞骨格に繋留されることでがん細胞の浸潤を促進する<ref name=OrianRousseau2002><pubmed>12464636</pubmed></ref>。上皮間葉転換には、EGF/EGFRシグナル伝達が関与する。舌[[扁平上皮癌]]において、EGFがエズリンのTyr353をリン酸化し、Aktおよび[[NF-κB]]の活性化を介して上皮間葉転換とがん転移を誘導する<ref name=Wang2014 /> | 一般にエズリンの発現が高い程、予後が悪く生存率は低下する。その原因の一つとしてがんの転移能が上昇することがある。エズリンが転移に関わるメカニズムの例として、CD44とアクチン細胞骨格とのクロスリンクや、EGF/EGFRを介した上皮間葉転換が挙げられる。CD44v6 (変異型エクソンv6配列を含むCD44アイソフォーム) はHGF/c-Metの共受容体としてエズリンと結合し、アクチン細胞骨格に繋留されることでがん細胞の浸潤を促進する<ref name=OrianRousseau2002><pubmed>12464636</pubmed></ref>。上皮間葉転換には、EGF/EGFRシグナル伝達が関与する。舌[[扁平上皮癌]]において、EGFがエズリンのTyr353をリン酸化し、Aktおよび[[NF-κB]]の活性化を介して上皮間葉転換とがん転移を誘導する<ref name=Wang2014 />。 | ||
==== マーリンの抗腫瘍作用 ==== | ==== マーリンの抗腫瘍作用 ==== | ||
がん抑制遺伝子である''nf2''はマーリンをコードする。''nf2''の不活化は、両側性に発生する前庭神経鞘腫および髄膜腫や脳室上衣腫などの脳腫瘍を特徴とする優性遺伝疾患である神経線維腫症II型を引き起こす<ref name=Asthagiri2009><pubmed>19476995</pubmed></ref>。神経線維腫症II型は、特有の疾患として両側性[[前庭神経鞘腫]] ([[第VIII脳神経]]に発生する腫瘍) を、一般的には脳神経や[[後根神経節]]、末梢神経にも神経鞘種を引き起こす。マーリンは、PI3Kや[[Raf]]/[[ERK]]、[[Wnt]]/[[β-カテニン]]、受容体型チロシンキナーゼ、[[mTOR]]、[[Hippo経路]]などさまざまなシグナル伝達経路を阻害することで腫瘍抑制効果を示す<ref name=Vlashi2024><pubmed>38967126</pubmed></ref>。 | |||
==関連項目== | ==関連項目== | ||