「セリンラセミ化酵素」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
40行目: 40行目:
}}  
}}  


英:serine racemase 独:Serin racemase 英略称:SR
英:serine racemase 独:Serin Racemase 英略称:SR


 SRは、<small>L</small>-[[wikipedia:JA:セリン|セリン]]からの[[wikipedia:JA:ラセミ化反応|ラセミ化反応]]および<small>D,L</small>-セリンの[[wikipedia:JA:脱水反応|デヒドラターゼ反応]](α,β-脱離)を[[wikipedia:JA:触媒|触媒]]する[[wikipedia:JA:ピリドキサール|ピリドキサール5-リン酸]] (PLP)依存性の[[wikipedia:JA:酵素|酵素]]である。[[wikipedia:JA:哺乳類|哺乳類]]の[[前脳]]部位では、SRは[[D-セリン|<small>D</small>-セリン]]の合成だけでなく<small>D</small>-セリンの分解反応も触媒し、細胞内<small>D</small>-セリンの含量を制御している可能性がある。<small>D</small>-セリンは、[[グルタミン酸受容体]]の一つである[[NMDA型グルタミン酸受容体|''N''-メチル‐<small>D</small>-アスパラギン酸受容体]](NMDAR)の[[wikipedia:JA:グリシン|グリシン]]サイトに作用する内在性コ・アゴニストとして脳の高次機能発現や[[神経変性疾患]]などに重要な役割を果たしていると考えられている。
 SRは、<small>L</small>-[[wikipedia:JA:セリン|セリン]]からの[[wikipedia:JA:ラセミ化反応|ラセミ化反応]]および<small>D,L</small>-セリンの[[wikipedia:JA:脱水反応|デヒドラターゼ反応]](α,β-脱離)を[[wikipedia:JA:触媒|触媒]]する[[wikipedia:JA:ピリドキサール|ピリドキサール5-リン酸]] (PLP)依存性の[[wikipedia:JA:酵素|酵素]]である。[[wikipedia:JA:哺乳類|哺乳類]]の[[前脳]]部位では、SRは[[D-セリン|<small>D</small>-セリン]]の合成だけでなく<small>D</small>-セリンの分解反応も触媒し、細胞内<small>D</small>-セリンの含量を制御している可能性がある。<small>D</small>-セリンは、[[グルタミン酸受容体]]の一つである[[NMDA型グルタミン酸受容体|''N''-メチル‐<small>D</small>-アスパラギン酸受容体]](NMDAR)の[[wikipedia:JA:グリシン|グリシン]]サイトに作用する内在性コ・アゴニストとして脳の高次機能発現や[[神経変性疾患]]などに重要な役割を果たしていると考えられている。
70行目: 70行目:
 NMDARのグリシンサイトには<SMALL>D</SMALL>-セリンのほかグリシンも結合するが、<SMALL>D</SMALL>-セリンはグリシンと比較して、リコンビナントNMDARに対して約3倍高い親和性を示す<ref><pubmed>7790891</pubmed></ref>。。脳スライスに<SMALL>D</SMALL>-セリンの分解酵素である<SMALL>D</SMALL>-アミノ酸酸化酵素(<small>D</small>-amino acid oxidase; DAO)を作用させ<SMALL>D</SMALL>-セリンのみを分解し、グリシンの量が変化しない実験条件において、NMDAR依存的な電流が減少し、LTPが誘導されない<ref><pubmed>14638938</pubmed></ref>。ことから、<SMALL>D</SMALL>-セリンがNMDARの生理的な内在性コ・アゴニストとして機能し、シナプス可塑性制御に関わると考えられている。
 NMDARのグリシンサイトには<SMALL>D</SMALL>-セリンのほかグリシンも結合するが、<SMALL>D</SMALL>-セリンはグリシンと比較して、リコンビナントNMDARに対して約3倍高い親和性を示す<ref><pubmed>7790891</pubmed></ref>。。脳スライスに<SMALL>D</SMALL>-セリンの分解酵素である<SMALL>D</SMALL>-アミノ酸酸化酵素(<small>D</small>-amino acid oxidase; DAO)を作用させ<SMALL>D</SMALL>-セリンのみを分解し、グリシンの量が変化しない実験条件において、NMDAR依存的な電流が減少し、LTPが誘導されない<ref><pubmed>14638938</pubmed></ref>。ことから、<SMALL>D</SMALL>-セリンがNMDARの生理的な内在性コ・アゴニストとして機能し、シナプス可塑性制御に関わると考えられている。


 現在、3系統のSRノックアウト(KO)マウスが確立されており、個体レベルにおけるSRの機能が明らかにされつつある。SRKOマウスでは、NMDAR 依存的な興奮性シナプス後電流(EPSCs)の減弱速度(decay) が遅くなり、海馬CA1のシナプスにおいてLTPが誘導されない<ref name=ref15></ref>。また、NMDAおよび[[アミロイドタンパク質|アミロイド]]β<sub>1-42</sub>(Aβ<sub>1-42</sub>)の脳内注入により誘導される[[神経細胞変性]]が野生型マウスに比べ有意に低下し、[[脳虚血]]により引き起こされる障害が緩和されることが報告されている<ref name=ref14></ref></ref><ref><pubmed>20107067</pubmed></ref>。これらの結果から、SRにより産生される内在性の<SMALL>D</SMALL>-セリンがNMDAR機能制御に関与すると考えられる。SRKOマウスでは、[[空間記憶]]の異常などの認知機能および社会性行動の障害も認められている<ref name=ref15></ref><ref><pubmed>19483194</pubmed></ref>。
 現在、3系統のSRノックアウト(KO)マウスが確立されており、個体レベルにおけるSRの機能が明らかにされつつある。SRKOマウスでは、NMDAR 依存的な興奮性シナプス後電流(EPSCs)の減弱速度(decay) が遅くなり、海馬CA1のシナプスにおいてLTPが誘導されない<ref name=ref15></ref>。また、NMDAおよび[[アミロイドタンパク質|アミロイド]]β<sub>1-42</sub>(Aβ<sub>1-42</sub>)の脳内注入により誘導される[[神経細胞変性]]が野生型マウスに比べ有意に低下し、[[脳虚血]]により引き起こされる障害が緩和されることが報告されている<ref name=ref14 /><ref><pubmed>20107067</pubmed></ref>。これらの結果から、SRにより産生される内在性の<SMALL>D</SMALL>-セリンがNMDAR機能制御に関与すると考えられる。SRKOマウスでは、[[空間記憶]]の異常などの認知機能および社会性行動の障害も認められている<ref name=ref15></ref><ref><pubmed>19483194</pubmed></ref>。


== 関連項目  ==
== 関連項目  ==