「膜融合」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英:membrane fusion  
英:membrane fusion  


 膜融合は二つの分かれた[[wikipedia:JA:脂質二重膜|脂質二重膜]]からなる小胞が融合し、一つの小胞になる過程である。[[ゴルジ体]]や[[小胞体]]膜を構成する小胞のように数百nm程度の比較的小さい小胞同士が融合する場合が最も良く研究されている。また、ゴルジ体等から[[細胞膜]]に輸送される小胞が最終的には細胞膜と融合する場合もある。この現象は[[神経伝達物質]]等の[[細胞外分泌]](Exocytosis)に必要不可欠な過程である。また、より大きな細胞とウイルスの融合、あるいは細胞同士の融合も膜融合の過程ととらえることができる。(以下要約を御続け下さい)
 膜融合は二つの分かれた[[wikipedia:JA:脂質二重膜|脂質二重膜]]からなる小胞が融合し、一つの小胞になる過程である。[[ゴルジ体]]や[[小胞体]]膜を構成する小胞のように数百nm程度の比較的小さい小胞同士が融合する場合が最も良く研究されている。また、ゴルジ体等から[[細胞膜]]に輸送される小胞が最終的には細胞膜と融合する場合もある。この現象は[[神経伝達物質]]等の[[細胞外分泌]](Exocytosis)に必要不可欠な過程である。また、より大きな細胞とウイルスの融合、あるいは細胞同士の融合も膜融合の過程ととらえることができる。膜融合は主にタンパク質によって進められ、SNAREが最も代表的なタンパク質群である。


==膜融合とは==
==膜融合とは==
 ほとんどの細胞内の構造体は、大きさの違いはあるものの、脂質膜による小胞よって構成されている。細胞の脂質膜は、脂質二重膜から構成され、水溶性のシグナル伝達物質等を通すことができない。これらの脂質二重膜小胞の二つが、融合して一つになる現象を、ここでは膜融合と呼ぶ。つまり、膜融合は二つの分かれた脂質二重膜からなる小胞が融合し、一つの小胞になる過程である。膜融合を行う小胞の大きさは様々であり、[[ゴルジ体]]や[[小胞体]]膜を構成する小胞のように数百nm程度の比較的小さい小胞同士が融合する場合が最も良く研究されている。また、ゴルジ体等から細胞膜に輸送される小胞が最終的には細胞膜と融合する場合もある。この現象は[[神経伝達物質]]等の[[エクソサイトーシス]]に必要不可欠な過程である。また、より大きな細胞と[[wikipedia:JA:ウイルス|ウイルス]]の融合、あるいは細胞同士の融合も膜融合の過程ととらえることができる。
 ほとんどの細胞内の構造体は、大きさの違いはあるものの、脂質膜による小胞よって構成されている。細胞の脂質膜は、脂質二重膜から構成され、水溶性のシグナル伝達物質等を通すことができない。これらの脂質二重膜小胞の二つが、融合して一つになる現象を、ここでは膜融合と呼ぶ。つまり、膜融合は二つの分かれた脂質二重膜からなる小胞が融合し、一つの小胞になる過程である。膜融合を行う小胞の大きさは様々であり、[[ゴルジ体]]や[[小胞体]]膜を構成する小胞のように数百nm程度の比較的小さい小胞同士が融合する場合が最も良く研究されている。また、ゴルジ体等から細胞膜に輸送される小胞が最終的には細胞膜と融合する場合もある。この現象は[[神経伝達物質]]等の[[エクソサイトーシス]](Exocytossi; 開口分泌)に必要不可欠な過程である。また、より大きな細胞と[[wikipedia:JA:ウイルス|ウイルス]]の融合、あるいは細胞同士の融合も膜融合の過程ととらえることができる。


 脂質二重膜の融合は、ほとんどの場合、脂質二重膜同士の繋留(tethering)、二重膜のうちの互いに接する一重膜部分のみの半融合(hemifusion)、残りの遠位の膜の融合と孔形成(full fusion)の順で生じると考えられる。繋留から半融合の過程では、融合する部分の脂質膜の曲率が高まった高エネルギー状態の中間体を取ると考えられる<ref><pubmed> 20211126 </pubmed></ref> <ref><pubmed> 20471239 </pubmed></ref>。
 脂質二重膜の融合は、ほとんどの場合、脂質二重膜同士の繋留(tethering)、二重膜のうちの互いに接する一重膜部分のみの半融合(hemifusion)、残りの遠位の膜の融合と孔形成(full fusion)の順で生じると考えられる。繋留から半融合の過程では、融合する部分の脂質膜の曲率が高まった高エネルギー状態の中間体を取ると考えられる<ref><pubmed> 20211126 </pubmed></ref> <ref><pubmed> 20471239 </pubmed></ref>。
12行目: 12行目:
 以下に良く研究されている膜融合に関わるタンパク質について述べる。
 以下に良く研究されている膜融合に関わるタンパク質について述べる。


===Rab結合タンパク質===
===Rab結合タンパク質(Rabエフェクター)===


 小胞が膜と結合する最初の段階の繋留には、多種が存在する[[Rab]] GTPaseに結合するRab 結合タンパク質が関与している場合が多いと考えられる。Rab結合タンパク質には、様々なものがあるが、いずれも[[SNAREタンパク質]]と機能的に、または、直接に結合することで、膜の融合を行う。
 小胞が膜と結合する最初の段階の繋留には、多種が存在する[[Rab]] GTPaseに結合するRab 結合タンパク質が関与している場合が多いと考えられる。Rab結合タンパク質には、様々なものがあるが、いずれも[[SNAREタンパク質]]と機能的に、または、直接に結合することで、膜の融合を行う。


 Rab結合タンパク質は[[wikipedia:JA:グアノシン三リン酸|GTP]]結合型の活性化Rabに結合する。これらには[[wikipedia:USO1|p115]](あるいはUso1)や[[wikipedia:GOLGA2|GM130]]、[[wikipedia:EEA1|EEA1]]、[[wikipedia:Exocyst|Exocyst complex]]などがあり、いずれもGolgi体や小胞体あるいはエクソサイトーシスにおける膜の融合に関与している。Rabのアミノ酸配列は保存性が高いが、Rab結合タンパク質のドメイン構造は様々である<ref><pubmed> 21248164 </pubmed></ref> <ref><pubmed> 19473826 </pubmed></ref>。
 Rab結合タンパク質(Rabエフェクター)は[[wikipedia:JA:グアノシン三リン酸|GTP]]結合型の活性化Rabに結合する。これらには[[wikipedia:USO1|p115]](あるいはUso1)や[[wikipedia:GOLGA2|GM130]]、[[wikipedia:EEA1|EEA1]]、[[wikipedia:Exocyst|Exocyst complex]]などがあり、いずれもGolgi体や小胞体あるいはエクソサイトーシスにおける膜の融合に関与している。Rabのアミノ酸配列は保存性が高いが、Rab結合タンパク質のドメイン構造は様々である<ref><pubmed> 21248164 </pubmed></ref> <ref><pubmed> 19473826 </pubmed></ref>。


===SNARE===
===SNARE===
28行目: 28行目:


===Complexinとシナプトタグミン===
===Complexinとシナプトタグミン===
SNAREのtrans-complexの形成において、実際に二つの膜は近接しているが、その融合には、complexinとシナプトタグミンが、重要な役割を果たしている。Complexinの膜融合の促進はカルシウム非依存的であるのに対して、シナプトタグミンは、膜融合の促進にカルシウムを必要とする。
SNAREのtrans-complexの形成において、実際に二つの膜は近接しているが、その融合には、complexinとシナプトタグミンが、重要な役割を果たしている。
 
 Complexinは、可溶性のαヘリックスであり、SNAREのtrans-complexに結合することで、trans-complexが膜融合を行い、cis-complexに変換する過程を妨げる。カルシウム濃度が高まると、シナプトタグミンがComplexinを追い出し、膜融合を行う。この機構はカルシウム依存的な、膜の融合に重要であると考えられている<ref><pubmed>19164740</pubmed></ref>。
 Complexinは、可溶性のαヘリックスであり、SNAREのtrans-complexに結合することで、trans-complexが膜融合を行い、cis-complexに変換する過程を妨げる。カルシウム濃度が高まると、シナプトタグミンがComplexinを追い出し、膜融合を行う。この機構はカルシウム依存的な、膜の融合に重要であると考えられている<ref><pubmed>19164740</pubmed></ref>。
 シナプトタグミン Iは65kDaの膜タンパク質で、膜貫通ドメインと細胞質側の2つの[[C2ドメイン]]の繰り返しの構造(C2AとC2B)を持っている。膜貫通ドメインでシナプス小胞の膜に存在し、C2ドメインでCa<sup>2+</sup>の濃度を感知する。このCa<sup>2+</sup>との結合は、C2ドメインに脂質膜結合能を持たせ、細胞膜側の脂質膜のチューブ化あるいは局所的な曲率の増大を引き起こすと考えられている。この局所的な脂質膜の曲率の増大は、とくにSNAREによる膜の融合を効率化すると考えられる<ref><pubmed> 17478680 </pubmed></ref> <ref><pubmed> 19703397 </pubmed></ref>。ここでは、膜のチューブ化がおこればよく、C2ドメインの機能は他の膜チューブ化タンパク質であるBARタンパク質のBARドメインによって代替できることが示されている<ref><pubmed> 19703397 </pubmed></ref>。
 シナプトタグミン Iは65kDaの膜タンパク質で、膜貫通ドメインと細胞質側の2つの[[C2ドメイン]]の繰り返しの構造(C2AとC2B)を持っている。膜貫通ドメインでシナプス小胞の膜に存在し、C2ドメインでCa<sup>2+</sup>の濃度を感知する。このCa<sup>2+</sup>との結合は、C2ドメインに脂質膜結合能を持たせ、細胞膜側の脂質膜のチューブ化あるいは局所的な曲率の増大を引き起こすと考えられている。この局所的な脂質膜の曲率の増大は、とくにSNAREによる膜の融合を効率化すると考えられる<ref><pubmed> 17478680 </pubmed></ref> <ref><pubmed> 19703397 </pubmed></ref>。ここでは、膜のチューブ化がおこればよく、C2ドメインの機能は他の膜チューブ化タンパク質であるBARタンパク質のBARドメインによって代替できることが示されている<ref><pubmed> 19703397 </pubmed></ref>。


15

回編集