16,040
回編集
細編集の要約なし |
細 (→突起伸長・細胞遊走) |
||
42行目: | 42行目: | ||
2005年にNimmerjahnらとGanらの研究グループは[[2光子顕微鏡]]を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed>15831717</pubmed></ref> <ref name=ref29><pubmed>15895084</pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。 | 2005年にNimmerjahnらとGanらの研究グループは[[2光子顕微鏡]]を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed>15831717</pubmed></ref> <ref name=ref29><pubmed>15895084</pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。 | ||
ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的[[走化性誘導因子]]としては[[ATP]]および[[ADP]]が知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed>11245682</pubmed></ref> <ref name=ref31><pubmed>14603465</pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]] | ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的[[走化性誘導因子]]としては[[ATP]]および[[ADP]]が知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed>11245682</pubmed></ref> <ref name=ref31><pubmed>14603465</pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]][[A1受容体|A1]]や[[A3受容体]]も細胞遊走に関与する<ref name=ref32><pubmed>17299767</pubmed></ref> <ref name=ref33><pubmed>22335470</pubmed></ref>。その一方で、ミクログリアの突起の退縮には[[A2A受容体]]が関与することも報告されている<ref name=ref34><pubmed>19525944</pubmed></ref>。ATPやADP以外にも[[Aβ]]や[[ブラジキニン]]、[[グルタミン酸]]、補体[[C5a]]、[[CCL21]]、[[NGF]]、[[EGF]]といった多岐にわたる因子がミクログリア走化性誘導因子として報告されている<ref name=ref1 /> <ref name=ref35><pubmed>11316806</pubmed></ref> <ref name=ref36><pubmed>7563239</pubmed></ref> <ref name=ref37><pubmed>9283823</pubmed></ref>。 | ||
==機能== | ==機能== |