9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
11行目: | 11行目: | ||
== ネトリンとは == | == ネトリンとは == | ||
胎児期に神経[[軸索]]は誘引分子と反発分子の働きにより標的細胞へ誘導され神経回路が形成される。スペインのRamón y Cajalは、胎児脊髄において背側に位置する交連神経細胞の軸索が腹側へ伸張するのは腹側正中部に存在するフロアープレート細胞から[[分泌]]される化学物質が交連軸索を誘引するためだという化学向性説(chemotropic theory)を提唱した<ref name=ref1><pubmed></pubmed></ref>。ネトリンは、この化学誘引物質として同定されたものであり、[[ラット]]胎児脊髄培養片の交連神経軸索を伸張させるタンパク質としてニワトリ胎児脳抽出物から精製された<ref name=ref2><pubmed></pubmed></ref> <ref name=ref3><pubmed></pubmed></ref>。サンスクリット語で “導く” 意味を持つnetrから命名された。遺伝子クローニングの結果、これが[[線虫]]のUNC-6の相同遺伝子であることが分かり、ネトリン/UNC-6は種を超えて広く保存された軸索ガイダンス分子であることが明らかとなった。 | 胎児期に神経[[軸索]]は誘引分子と反発分子の働きにより標的細胞へ誘導され神経回路が形成される。スペインのRamón y Cajalは、胎児脊髄において背側に位置する交連神経細胞の軸索が腹側へ伸張するのは腹側正中部に存在するフロアープレート細胞から[[分泌]]される化学物質が交連軸索を誘引するためだという化学向性説(chemotropic theory)を提唱した<ref name=ref1><pubmed>7605072</pubmed></ref>。ネトリンは、この化学誘引物質として同定されたものであり、[[ラット]]胎児脊髄培養片の交連神経軸索を伸張させるタンパク質としてニワトリ胎児脳抽出物から精製された<ref name=ref2><pubmed>8062384</pubmed></ref> <ref name=ref3><pubmed>8062385</pubmed></ref>。サンスクリット語で “導く” 意味を持つnetrから命名された。遺伝子クローニングの結果、これが[[線虫]]のUNC-6の相同遺伝子であることが分かり、ネトリン/UNC-6は種を超えて広く保存された軸索ガイダンス分子であることが明らかとなった。 | ||
== 構造 == | == 構造 == | ||
[[image:ネトリン(図1).jpg|thumb|300px|'''図1.ネトリンの構造'''<br><ref name=ref4><pubmed></pubmed></ref>より引用、改変。]] | [[image:ネトリン(図1).jpg|thumb|300px|'''図1.ネトリンの構造'''<br><ref name=ref4><pubmed>21558366</pubmed></ref>より引用、改変。]] | ||
[[image:ネトリン(図2).jpg|thumb|300px|'''図2.ネトリン受容体の構造'''<br><ref name=ref4 />より引用、改変。]] | [[image:ネトリン(図2).jpg|thumb|300px|'''図2.ネトリン受容体の構造'''<br><ref name=ref4 />より引用、改変。]] | ||
23行目: | 23行目: | ||
分泌型ネトリンは、軸索の誘引、反発および細胞移動の制御を行う。例えば、交連神経細胞を含む胎児脊髄片を培養しネトリンを作用させると、交連神経軸索の伸張が促進される<ref name=ref2 />。また、培養片の中で交連神経軸索がネトリン分泌細胞へ向かって伸張方向を変えることが観察される<ref name=ref3 />。一部の神経細胞(例えば[[滑車神経]]細胞)の軸索はネトリンにより反発される。 | 分泌型ネトリンは、軸索の誘引、反発および細胞移動の制御を行う。例えば、交連神経細胞を含む胎児脊髄片を培養しネトリンを作用させると、交連神経軸索の伸張が促進される<ref name=ref2 />。また、培養片の中で交連神経軸索がネトリン分泌細胞へ向かって伸張方向を変えることが観察される<ref name=ref3 />。一部の神経細胞(例えば[[滑車神経]]細胞)の軸索はネトリンにより反発される。 | ||
ネトリンの受容体としては、Deleted in Colorectal Cancer (DCC)とそのパラログであるネオゲニン(neogenin)、UNC-5(哺乳動物ではUNC5A-Dの4種類が存在する)、およびDown syndrome cell adhesion molecule (DSCAM)がある<ref name=ref5><pubmed></pubmed></ref> <ref name=ref6><pubmed></pubmed></ref> <ref name=ref7><pubmed></pubmed></ref>。DCCとネオゲニンは軸索誘引作用を持ち、UNC5は軸索反発作用を持つ。DCCとUNC5の両方を発現する細胞では軸索反発が起こる。 | ネトリンの受容体としては、Deleted in Colorectal Cancer (DCC)とそのパラログであるネオゲニン(neogenin)、UNC-5(哺乳動物ではUNC5A-Dの4種類が存在する)、およびDown syndrome cell adhesion molecule (DSCAM)がある<ref name=ref5><pubmed> 8861902</pubmed></ref> <ref name=ref6><pubmed>9126742</pubmed></ref> <ref name=ref7><pubmed>18585357</pubmed></ref>。DCCとネオゲニンは軸索誘引作用を持ち、UNC5は軸索反発作用を持つ。DCCとUNC5の両方を発現する細胞では軸索反発が起こる。 | ||
ネトリンはヘパリンやヘパラン硫酸と高い親和性で結合するため、細胞外に分泌されると細胞表面や[[基底膜]]に局在する。ネトリンはインテグリンとも結合し、細胞接着や移動を制御する。 | ネトリンはヘパリンやヘパラン硫酸と高い親和性で結合するため、細胞外に分泌されると細胞表面や[[基底膜]]に局在する。ネトリンはインテグリンとも結合し、細胞接着や移動を制御する。 | ||
GPIアンカー型ネトリンは、netrin G ligands (NGL-1, NGL-2)に結合し、[[グルタミン酸]]作動性[[シナプス]]形成に関わる<ref name=ref8><pubmed></pubmed></ref>。 | GPIアンカー型ネトリンは、netrin G ligands (NGL-1, NGL-2)に結合し、[[グルタミン酸]]作動性[[シナプス]]形成に関わる<ref name=ref8><pubmed>25411505</pubmed></ref>。 | ||
=== 個体における機能 === | === 個体における機能 === | ||
ネトリン1遺伝子を欠損した[[マウス]]は神経発生異常を示し生後まもなく死亡する<ref name=ref9><pubmed></pubmed></ref>。脊髄交連神経細胞の軸索はほとんど伸張せず、この異常はDCC[[ノックアウトマウス]]で見られる異常と同一であることから、ネトリンとDCCが交連神経の形成に必要であることが示された<ref name=ref9 /> <ref name=ref10><pubmed></pubmed></ref>。脊髄以外の交連(脳梁、前交連、[[海馬]]交連)も形成されないか、低形成である<ref name=ref9 />。 | ネトリン1遺伝子を欠損した[[マウス]]は神経発生異常を示し生後まもなく死亡する<ref name=ref9><pubmed>8978605</pubmed></ref>。脊髄交連神経細胞の軸索はほとんど伸張せず、この異常はDCC[[ノックアウトマウス]]で見られる異常と同一であることから、ネトリンとDCCが交連神経の形成に必要であることが示された<ref name=ref9 /> <ref name=ref10><pubmed>9126737 </pubmed></ref>。脊髄以外の交連(脳梁、前交連、[[海馬]]交連)も形成されないか、低形成である<ref name=ref9 />。 | ||
ネトリンは細胞移動にも必要であり、ネトリン1あるいはDCCのノックアウトマウスでは橋核が形成されない<ref name=ref9 /> <ref name=ref10 />。これは、下菱脳唇で誕生した[[小脳]]前核細胞(DCC を発現している)が延髄腹側で発現するネトリン1により誘引されて橋核を形成するため、このシグナルが欠損すると細胞移動が正常に起こらず橋核が形成されないと考えられる。 | ネトリンは細胞移動にも必要であり、ネトリン1あるいはDCCのノックアウトマウスでは橋核が形成されない<ref name=ref9 /> <ref name=ref10 />。これは、下菱脳唇で誕生した[[小脳]]前核細胞(DCC を発現している)が延髄腹側で発現するネトリン1により誘引されて橋核を形成するため、このシグナルが欠損すると細胞移動が正常に起こらず橋核が形成されないと考えられる。 | ||
ネトリンは、軸索ガイダンス、細胞移動の制御以外に、軸索分岐、シナプス形成、[[オリゴデンドロサイト]]の[[分化]]と成熟にも関与している<ref name=ref4 />。更に、乳腺、肺、膵臓、血管など神経系以外の組織における形態形成にも関わることが明らかになってきた<ref name=ref11><pubmed></pubmed></ref>。 | ネトリンは、軸索ガイダンス、細胞移動の制御以外に、軸索分岐、シナプス形成、[[オリゴデンドロサイト]]の[[分化]]と成熟にも関与している<ref name=ref4 />。更に、乳腺、肺、膵臓、血管など神経系以外の組織における形態形成にも関わることが明らかになってきた<ref name=ref11><pubmed>17356579 </pubmed></ref>。 | ||
== 疾患との関わり == | == 疾患との関わり == | ||
ネトリンの受容体であるDCCの変異で先天的[[鏡像運動]]症(congenital mirror movement syndrome)が生じる<ref name=ref12><pubmed></pubmed></ref>。この遺伝性疾患は、片側の随意運動により反対側に不随意運動が誘発されるものであり、ネトリン—DCCシグナルが[[ヒト]]においても神経回路、特に交差性線維の形成で重要な役割を担っていることを示唆する。ヒトのネトリン1遺伝子、あるいはDCC遺伝子の一塩基多型がパーキンソン病や[[筋萎縮性側索硬化症]]になりやすさに関連する。ネトリンG1遺伝子の変異はRett症候群の原因となる<ref name=ref13><pubmed></pubmed></ref>。 | ネトリンの受容体であるDCCの変異で先天的[[鏡像運動]]症(congenital mirror movement syndrome)が生じる<ref name=ref12><pubmed>21242494</pubmed></ref>。この遺伝性疾患は、片側の随意運動により反対側に不随意運動が誘発されるものであり、ネトリン—DCCシグナルが[[ヒト]]においても神経回路、特に交差性線維の形成で重要な役割を担っていることを示唆する。ヒトのネトリン1遺伝子、あるいはDCC遺伝子の一塩基多型がパーキンソン病や[[筋萎縮性側索硬化症]]になりやすさに関連する。ネトリンG1遺伝子の変異はRett症候群の原因となる<ref name=ref13><pubmed>19467332</pubmed></ref>。 | ||
== 関連語 == | == 関連語 == |