16,040
回編集
細 (→構造) |
細編集の要約なし |
||
13行目: | 13行目: | ||
{{PBB/93986}} | {{PBB/93986}} | ||
==FOXP2とは== | ==FOXP2とは== | ||
1900年に、重篤な[[発話障害]]または[[言語障害]]がある家系(KE家)が報告された<ref><pubmed> 2332125 </pubmed></ref>。3世代にわたって総計37名中15名で言語障害が認められたが | 1900年に、重篤な[[発話障害]]または[[言語障害]]がある家系(KE家)が報告された<ref><pubmed> 2332125 </pubmed></ref>。3世代にわたって総計37名中15名で言語障害が認められたが<ref><pubmed> 11872605</pubmed></ref>、[[聾]]や[[精神遅滞]]などの非言語的障害はなく、言語獲得にのみ障害が認められた。多くの例において、発語において文法的な誤りがあり、さまざまな段階での言語理解が難しいという特徴があった。また運動面においても症状があり、四肢などに運動障害は認められないが、口周囲や顔面の[[運動失調]]が報告されている<ref><pubmed> 11872604</pubmed></ref>。[[MRI]]を用いた研究から、言語機能と関連する脳領域における異常がある可能性が示された<ref><pubmed>14555953</pubmed></ref>。 | ||
KE家の詳細な遺伝学的解析から、発話・言語障害の原因となる遺伝子座(SPCH1)が第7染色体長腕上の7q31という領域にあることが同定された<ref><pubmed> 9462748 </pubmed></ref>。さらに、KE家とは血縁関係になく、類似の発話・言語機能障害を持つC.S.氏の遺伝子を解析することにより、発話・言語機能障害の原因となる遺伝子領域が絞りこまれ、発話・言語障害の原因遺伝子として[[転写制御因子]]をコードするForkhead box protein P2 (FOXP2)が同定された<ref><pubmed> 10880297 </pubmed></ref><ref name=Lai2001><pubmed> 11586359 </pubmed></ref>。 | KE家の詳細な遺伝学的解析から、発話・言語障害の原因となる遺伝子座(SPCH1)が第7染色体長腕上の7q31という領域にあることが同定された<ref><pubmed> 9462748 </pubmed></ref>。さらに、KE家とは血縁関係になく、類似の発話・言語機能障害を持つC.S.氏の遺伝子を解析することにより、発話・言語機能障害の原因となる遺伝子領域が絞りこまれ、発話・言語障害の原因遺伝子として[[転写制御因子]]をコードするForkhead box protein P2 (FOXP2)が同定された<ref><pubmed> 10880297 </pubmed></ref><ref name=Lai2001><pubmed> 11586359 </pubmed></ref>。 | ||
21行目: | 21行目: | ||
==構造== | ==構造== | ||
[[ファイル:FOXP2.png|thumb|right|350px|'''図1. FOXP2のドメイン構造'''<br>Zn: C2H2型Znフィンガードメイン]] | [[ファイル:FOXP2.png|thumb|right|350px|'''図1. FOXP2のドメイン構造'''<br>Zn: C2H2型Znフィンガードメイン]] | ||
FOXP2はFoxファミリータンパク質のひとつである。Foxファミリータンパク質は80-100アミノ酸残基からなるDNA結合領域、3つの[[αヘリックス]]と3つの[[βシート]]、および2つのwing領域(3つ目のβシートを挟むように配置されたループ)からなる[[Fork-headドメイン]](あるいはfork head box/winged-helix (FOX)ドメイン)という基本構造をもつ<ref name=Hannenhalli2009><pubmed>19274050</pubmed></ref> | FOXP2はFoxファミリータンパク質のひとつである。Foxファミリータンパク質は80-100アミノ酸残基からなるDNA結合領域、3つの[[αヘリックス]]と3つの[[βシート]]、および2つのwing領域(3つ目のβシートを挟むように配置されたループ)からなる[[Fork-headドメイン]](あるいはfork head box/winged-helix (FOX)ドメイン)という基本構造をもつ<ref name=Hannenhalli2009><pubmed>19274050</pubmed></ref><ref name=Lai2001 /><ref name=Shu2001><pubmed> 11358962 </pubmed></ref><ref><pubmed> 16407075 </pubmed></ref>。 | ||
さらに、FOXP2/Foxp2はグルタミンリッチ(Gln-rich) | さらに、FOXP2/Foxp2はグルタミンリッチ(Gln-rich)、[[C2H2型ジンクフィンガー]](Zn)、[[ロイシンジッパー]]、C末端結合ドメイン1(CTBP1-binding)といったドメインを有している<ref name=Li2004 />('''図1''')。 | ||
==ファミリー== | ==ファミリー== | ||
Fork headドメインの相同性の程度によって、Foxファミリータンパク質は[[FOXA]]から[[FOXS]]までの19のサブクラスに分類される<ref name=Kaestner2000 /><ref name=Hannenhalli2009 /> | Fork headドメインの相同性の程度によって、Foxファミリータンパク質は[[FOXA]]から[[FOXS]]までの19のサブクラスに分類される<ref name=Kaestner2000 /><ref name=Hannenhalli2009 />。ヒトでは50種類、マウスでは44種類のFOX遺伝子(Fox遺伝子)がコードされている<ref><pubmed>20650821</pubmed></ref>('''表1''')。Foxファミリータンパク質は進化を通して高度に保存されており、例えばショウジョウバエのfork headタンパク質とヒトのFOXA1タンパク質のDNA結合ドメインの相同性は90%である<ref name=Hannenhalli2009 />。FOXファミリーにおいて、[[αヘリックス]]と[[βシート]]は高度に保存されており、2つ目と3つ目のαヘリックスの間に構造的な違いがある<ref><pubmed>33303287</pubmed></ref>。 | ||
[[ヒト]]''FOXP2''の[[相同遺伝子]]([[オーソログ]])は、[[サル]]や[[マウス]]などの[[哺乳類]]だけでなく、[[鳥類]]([[キンカチョウ]]など)から[[魚類]]([[ゼブラフィッシュ]]など)に至るまで同定されている | [[ヒト]]''FOXP2''の[[相同遺伝子]]([[オーソログ]])は、[[サル]]や[[マウス]]などの[[哺乳類]]だけでなく、[[鳥類]]([[キンカチョウ]]など)から[[魚類]]([[ゼブラフィッシュ]]など)に至るまで同定されている<ref><pubmed> 16028276</pubmed></ref><ref name=Ferland2003><pubmed> 12687690 </pubmed></ref><ref name=Takahashi2008 /><ref name=Teramitsu2004><pubmed> 15056695 </pubmed></ref>。本項では、ヒト''FOXP2''に対応するマウスのオーソログは''Foxp2''、それ以外の動物種のオーソログは''FoxP2''と表記する<ref name=Kaestner2000><pubmed>10702024</pubmed></ref>。また、ヒトFOXP2に対応するタンパク質は、Foxp2(マウス)、FoxP2(それ以外の動物種)と表記する。 | ||
FOXP2タンパク質と同様な[[ジンクフィンガー]]および[[ロイシンジッパー]]ドメインを持つFOXPタンパク質ファミリーは、Drosophilaなどの無脊椎動物にもみられるが、脊椎動物ではFOXP1, FOXP3, FOXP4が知られている<ref name=Co2020><pubmed>31999079</pubmed></ref><ref name=Santos2010><pubmed>20651048</pubmed></ref> | FOXP2タンパク質と同様な[[ジンクフィンガー]]および[[ロイシンジッパー]]ドメインを持つFOXPタンパク質ファミリーは、Drosophilaなどの無脊椎動物にもみられるが、脊椎動物ではFOXP1, FOXP3, FOXP4が知られている<ref name=Co2020><pubmed>31999079</pubmed></ref><ref name=Santos2010><pubmed>20651048</pubmed></ref>。マウスの脳内にては、Foxp1, Foxp2, Foxp4が発現しており、1つの細胞に共発現している場合がある<ref><pubmed>14516685</pubmed></ref><ref name=Mendoza2015><pubmed>25556631</pubmed></ref><ref name=Spaeth2015><pubmed>26021489</pubmed></ref>。これら3つのFOX(or Fox)タンパク質の発現は、細胞種および脳領域によって異なるだけでなく、発生段階によっても変動する<ref name=Co2020 />。一方、Foxp3は[[免疫]]系の[[T regulatory細胞]]において、発現が確認されている<ref><pubmed>19114986</pubmed></ref>。また、哺乳類の''FOXP''遺伝子に相当する遺伝子がショウジョウバエにも1つあることが確認されている<ref name=Santos2010 />。 | ||
ヒト(またはマウス)細胞内において(in vitro experiment)、FOXP2が機能するためには、FOXP2同士によるホモダイマー形成または、FOXP1(またはFOXP4)とのヘテロダイマーを形成する必要がある、と報告されている<ref><pubmed>14701752</pubmed></ref><ref><pubmed>25027557</pubmed></ref> | ヒト(またはマウス)細胞内において(in vitro experiment)、FOXP2が機能するためには、FOXP2同士によるホモダイマー形成または、FOXP1(またはFOXP4)とのヘテロダイマーを形成する必要がある、と報告されている<ref><pubmed>14701752</pubmed></ref><ref><pubmed>25027557</pubmed></ref>。同様に、[[キンカチョウ]]([[ゼブラフィンチ]])のArea Xにおいても、FoxP1, FoxP2, FoxP4がタンパク質ホモダイマーまたはヘテロダイマーを形成し、その組み合わせによって制御する遺伝子が異なることが報告されている<ref name=Mendoza2017><pubmed>28507505</pubmed></ref>。 | ||
{| class="wikitable" | {| class="wikitable" | ||
78行目: | 78行目: | ||
==発現== | ==発現== | ||
[[ファイル:Sugiyama&Osumi_figure2.jpg|300px|thumb|'''図2.Foxp2の発現パターン'''<br> (A)マウス14日齢の大脳新皮質領域<br>(B)マウス30日齢の小脳皮質領域]] | [[ファイル:Sugiyama&Osumi_figure2.jpg|300px|thumb|'''図2.Foxp2の発現パターン'''<br> (A)マウス14日齢の大脳新皮質領域<br>(B)マウス30日齢の小脳皮質領域]] | ||
ヒト''FOXP2''(および[[齧歯類]]''Foxp2'')の発現部位に関しては、齧歯類の胚と成体、胎生期のヒトにおいて解析が為されている(鳴禽については別の項で記述する)。''FOXP2''/''Foxp2''は、感覚受容に関わる領域(視床など)、[[大脳]][[辺縁系]]、大脳[[新皮質]]、そして運動機能に関わる領域([[小脳]]や[[線条体]]、[[橋]]など)、[[網膜]]において広範な発現パターンを示す ('''表2''') | ヒト''FOXP2''(および[[齧歯類]]''Foxp2'')の発現部位に関しては、齧歯類の胚と成体、胎生期のヒトにおいて解析が為されている(鳴禽については別の項で記述する)。''FOXP2''/''Foxp2''は、感覚受容に関わる領域(視床など)、[[大脳]][[辺縁系]]、大脳[[新皮質]]、そして運動機能に関わる領域([[小脳]]や[[線条体]]、[[橋]]など)、[[網膜]]において広範な発現パターンを示す ('''表2''')<ref name=Ferland2003 /><ref name=Gray2008><pubmed> 18218908 </pubmed></ref><ref><pubmed> 12876151 </pubmed></ref><ref><pubmed> 19463901 </pubmed></ref><ref name=Takahashi2003><pubmed>12815709</pubmed></ref><ref name=Teramitsu2004 />。なお、Foxp2は脳だけでなく、[[肺]]や[[心臓]]、[[腸]]にも発現が見られ<ref name=Shu2001 />、肺発生においては[[肺胞上皮]]細胞の分化にFoxp2が関与していることが報告されている<ref name=Shu2001 />。また''Foxp2''は[[呼吸中枢]]の[[橋]]背側部にも発現が認められている<ref name=Gray2008 />。'''図2'''にマウス脳における''Foxp2''発現パターンの例を示す。 | ||
{| class="wikitable" | {| class="wikitable" | ||
108行目: | 108行目: | ||
以下、FOXP1/2/4(およびこれらのオーソログ)の脳内の各領域における発現パターンについて記述する。 | 以下、FOXP1/2/4(およびこれらのオーソログ)の脳内の各領域における発現パターンについて記述する。 | ||
===大脳皮質=== | ===大脳皮質=== | ||
脊椎動物の皮質領域において、''FOXP1''と''FOXP2'' | 脊椎動物の皮質領域において、''FOXP1''と''FOXP2''(およびこれらのオーソログ)の発現は相補的である。マウス脳にて、Foxp1は[[終脳内投射神経細胞]](intra-telencephalic projection neurons および[[第VIa層]]の[[皮質-視床路投射神経細胞]](cortico-thalamic projection neuron) に発現している<ref name=Hisaoka2010><pubmed>20040367</pubmed></ref>。一方、Foxp2は[[第VI層]]皮質-視床路投射神経細胞と[[第V層]][[錐体路]]神経細胞に発現している<ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Hisaoka2010 /><ref><pubmed>31099752</pubmed></ref><ref><pubmed>24014670</pubmed></ref>。このマウス皮質領域における''Foxp1''と''Foxp2''の発現パターンは(''Foxp1''は上層側、''Foxp2''は下層側)、他の脊椎動物([[コウモリ]]、サル、ヒト)においても保存される傾向にある<ref name=RodenasCuadrado2018 ><pubmed>29297931</pubmed></ref><ref name=Takahashi2008 /><ref name=Teramitsu2004 />。''FOXP4''およびこのオーソログの発現は、[[ラット]]皮質では一過性の発現が確認されているが、成体期のゼブラフィンチでは広範な皮質領域に発現が見られる<ref name=Mendoza2015 />。 | ||
===海馬体=== | ===海馬体=== | ||
哺乳類において、''FOXP1''とそのオーソログの発現は[[CA1]]および[[海馬台]]に見られる<ref name=Ferland2003 /><ref name=Takahashi2008><pubmed>18461604</pubmed></ref> | 哺乳類において、''FOXP1''とそのオーソログの発現は[[CA1]]および[[海馬台]]に見られる<ref name=Ferland2003 /><ref name=Takahashi2008><pubmed>18461604</pubmed></ref>。''FOXP2''とそのオーソログの発現は種によって異なり、マウスではほとんど発現していないが、コウモリのCA1では高い発現レベルを示すことが報告されている<ref name=Ferland2003 />b<ref name=Takahashi2008 /><ref name= RodenasCuadrado2018 />。''FOXP4''とそのオーソログは胎生期の齧歯類[[海馬体]]領域にて、一時的に広範な発現が見られるが、生後になってからその発現レベルは低下する<ref name=Ferland2003 /><ref name=Takahashi2003 /><ref name=Takahashi2008 />。 | ||
===扁桃体=== | ===扁桃体=== | ||
脊椎動物の[[扁桃体]]抑制性[[介在細胞]]群([[intercalated nucleus]], [[ITC]])において、''FOXP2''およびそのオーソログの発現は高度に保存されている<ref name=Campbell2009 /><ref name=Ferland2003 /><ref name=Kaoru2010><pubmed>20004711</pubmed></ref><ref name=Takahashi2008 /><ref name=Vicario2017><pubmed>27160258</pubmed></ref> | 脊椎動物の[[扁桃体]]抑制性[[介在細胞]]群([[intercalated nucleus]], [[ITC]])において、''FOXP2''およびそのオーソログの発現は高度に保存されている<ref name=Campbell2009 /><ref name=Ferland2003 /><ref name=Kaoru2010><pubmed>20004711</pubmed></ref><ref name=Takahashi2008 /><ref name=Vicario2017><pubmed>27160258</pubmed></ref>。齧歯類の扁桃体において、''Foxp1''/''2''/''4''の発現はほとんど重ならないことが報告されている<ref name=Campbell2009 /><ref name=Ferland2003 /><ref name=Kaoru2010 /><ref name=Takahashi2008 />。 | ||
===大脳基底核=== | ===大脳基底核=== | ||
脊椎動物の大脳[[基底核]]において、''FOXP1''/''2''(およびそれらのオーソログ)の発現パターンは保存されている。線条体では、広範な領域に''FOXP1''(およびそのオーソログ)が発現しており、''FOXP2''(およびそのオーソログ)の発現は限定的である<ref name=Takahashi2003 /><ref name=Takahashi2008 /><ref name=Fong2018><pubmed>30031127</pubmed></ref><ref name=Saunders2018><pubmed>30096299</pubmed></ref><ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Lai2003><pubmed>12876151</pubmed></ref><ref name=Teramitsu2004 /><ref name=Haesler2007><pubmed>18052609</pubmed></ref> | 脊椎動物の大脳[[基底核]]において、''FOXP1''/''2''(およびそれらのオーソログ)の発現パターンは保存されている。線条体では、広範な領域に''FOXP1''(およびそのオーソログ)が発現しており、''FOXP2''(およびそのオーソログ)の発現は限定的である<ref name=Takahashi2003 /><ref name=Takahashi2008 /><ref name=Fong2018><pubmed>30031127</pubmed></ref><ref name=Saunders2018><pubmed>30096299</pubmed></ref><ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Lai2003><pubmed>12876151</pubmed></ref><ref name=Teramitsu2004 /><ref name=Haesler2007><pubmed>18052609</pubmed></ref>。[[淡蒼球]]では、''FOXP1''(およびそのオーソログ)の発現は無く、''FOXP2''(およびそのオーソログ)の発現レベルは低い<ref name=Ferland2003 /><ref name=Lai2003 /><ref name=Teramitsu2004 />。齧歯類''Foxp4''の発現は発達期に限定しているが、ゼブラフィンチでは成体期まで''FoxP4''の発現は維持される<ref name=Mendoza2015 />。 | ||
===その他の脳領域=== | ===その他の脳領域=== | ||
[[視床]]や小脳、[[嗅球]]などにおいても''Foxp1''/''2''/''4''(およびそれらのオーソログ)の発現は確認されている。発現している領域や動物種によって、''Foxp1''/''2''/''4''(およびそれらのオーソログ)の発現は発達期だけの場合もあれば、成体期まで継続する場合がある<ref name=Co2021><pubmed>31999079</pubmed></ref><ref name=Ferland2003 /><ref name=Takahashi2008 /><ref name=Lai2003 /><ref name=Teramitsu2004 /><ref name=Fujita2012><pubmed>21935935</pubmed></ref><ref name=Tam2011><pubmed>20951773</pubmed></ref><ref name=Haesler2004><pubmed>15056696</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Morikawa2009><pubmed>19463901</pubmed></ref><ref name=Morikawa2009b><pubmed>19797899</pubmed></ref> | [[視床]]や小脳、[[嗅球]]などにおいても''Foxp1''/''2''/''4''(およびそれらのオーソログ)の発現は確認されている。発現している領域や動物種によって、''Foxp1''/''2''/''4''(およびそれらのオーソログ)の発現は発達期だけの場合もあれば、成体期まで継続する場合がある<ref name=Co2021><pubmed>31999079</pubmed></ref><ref name=Ferland2003 /><ref name=Takahashi2008 /><ref name=Lai2003 /><ref name=Teramitsu2004 /><ref name=Fujita2012><pubmed>21935935</pubmed></ref><ref name=Tam2011><pubmed>20951773</pubmed></ref><ref name=Haesler2004><pubmed>15056696</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Morikawa2009><pubmed>19463901</pubmed></ref><ref name=Morikawa2009b><pubmed>19797899</pubmed></ref>。 | ||
==機能== | ==機能== | ||
126行目: | 126行目: | ||
FOXP2/Foxp2タンパク質は転写制御因子として、標的遺伝子の転写調節領域に結合し、転写抑制の制御を行う<ref name=Li2004><pubmed> 14701752 </pubmed></ref><ref name=Shu2001 />。FOXP2/Foxp2がどのような遺伝子の発現を制御しているかについて網羅的な解析がなされ、そのうちのいくつか([[アポリポタンパク質D]] ([[APOD]])、[[コレシストキニン]] ([[CCK]])、[[コレシストキニンA受容体]] ([[CCK-AR]])、[[サイクリンD2]]、([[CCND2]])、[[CD5]]、[[DISC1]]、[[ドーパミンD2受容体]] ([[DRD2]])、[[GABA受容体#GABAB.E5.8F.97.E5.AE.B9.E4.BD.93|GABA<sub>B</sub>受容体]] ([[GABBR1]])、[[メタロチオネイン2A]] ([[MT2A]])、神経型[[一酸化窒素合成酵素]] ([[NOS1]])、[[paired-like homeobox 2b]] ([[PMX2B]])、[[トリプトファン-2,3-ジオキシゲナーゼ]] ([[TDO2]])、[[TIMELESS]]、[[Wnt1|WNT1]]、[[Znフィンガータンパク質74]] ([[ZNF74]]))は言語発達との関連があると言われている<ref><pubmed> 17999357 </pubmed></ref><ref><pubmed> 17999362 </pubmed></ref>。逆に、Foxp2自身を制御する上流因子もしくは相互作用する因子の候補として、脳の発生発達に重要な[[PAX6|Pax6]]が挙げられる<ref><pubmed>21617155 </pubmed></ref>。 | FOXP2/Foxp2タンパク質は転写制御因子として、標的遺伝子の転写調節領域に結合し、転写抑制の制御を行う<ref name=Li2004><pubmed> 14701752 </pubmed></ref><ref name=Shu2001 />。FOXP2/Foxp2がどのような遺伝子の発現を制御しているかについて網羅的な解析がなされ、そのうちのいくつか([[アポリポタンパク質D]] ([[APOD]])、[[コレシストキニン]] ([[CCK]])、[[コレシストキニンA受容体]] ([[CCK-AR]])、[[サイクリンD2]]、([[CCND2]])、[[CD5]]、[[DISC1]]、[[ドーパミンD2受容体]] ([[DRD2]])、[[GABA受容体#GABAB.E5.8F.97.E5.AE.B9.E4.BD.93|GABA<sub>B</sub>受容体]] ([[GABBR1]])、[[メタロチオネイン2A]] ([[MT2A]])、神経型[[一酸化窒素合成酵素]] ([[NOS1]])、[[paired-like homeobox 2b]] ([[PMX2B]])、[[トリプトファン-2,3-ジオキシゲナーゼ]] ([[TDO2]])、[[TIMELESS]]、[[Wnt1|WNT1]]、[[Znフィンガータンパク質74]] ([[ZNF74]]))は言語発達との関連があると言われている<ref><pubmed> 17999357 </pubmed></ref><ref><pubmed> 17999362 </pubmed></ref>。逆に、Foxp2自身を制御する上流因子もしくは相互作用する因子の候補として、脳の発生発達に重要な[[PAX6|Pax6]]が挙げられる<ref><pubmed>21617155 </pubmed></ref>。 | ||
転写制御因子であるFOXP2の①発現を制御する分子群、②FOXP2と相互作用することで機能する分子群、および③FOXP2によって発現が制御される分子群が次々に明らかにされてきている。これらの分子によって構成される「FOXP2の分子ネットワーク」を解明することが、FOXP2がどのようにして神経系の発達に寄与するのかといった手がかりとなり、究極的にはヒトの言語・発話機能の獲得がどのようにしてなされるのか、その解明へとつながることが期待される<ref name=denHoed2021><pubmed>34260143</pubmed></ref> | 転写制御因子であるFOXP2の①発現を制御する分子群、②FOXP2と相互作用することで機能する分子群、および③FOXP2によって発現が制御される分子群が次々に明らかにされてきている。これらの分子によって構成される「FOXP2の分子ネットワーク」を解明することが、FOXP2がどのようにして神経系の発達に寄与するのかといった手がかりとなり、究極的にはヒトの言語・発話機能の獲得がどのようにしてなされるのか、その解明へとつながることが期待される<ref name=denHoed2021><pubmed>34260143</pubmed></ref>。 | ||
===言語機能との関わり=== | ===言語機能との関わり=== | ||
====遺伝子変異==== | ====遺伝子変異==== | ||
KE家の遺伝子変異はFOXP2配列の553番目のアミノ酸が[[アルギニン]]から[[ヒスチジン]]に変わっており(R553H)、この遺伝子変異はKE家の中でも障害を抱えるメンバーのみに起こり、障害を抱えないKE家のメンバーは健常者と同様に遺伝子変異は見られなかった<ref name=French2007><pubmed>17619227</pubmed></ref> | KE家の遺伝子変異はFOXP2配列の553番目のアミノ酸が[[アルギニン]]から[[ヒスチジン]]に変わっており(R553H)、この遺伝子変異はKE家の中でも障害を抱えるメンバーのみに起こり、障害を抱えないKE家のメンバーは健常者と同様に遺伝子変異は見られなかった<ref name=French2007><pubmed>17619227</pubmed></ref>。FOXP2において、この553番目のアルギニンはFOXP2がDNAに結合するための主要な構成要素である。553番目のアルギニンがヒスチジンに置換されると、FOXP2タンパク質とDNAとの結合は阻害されることが示唆されている<ref><pubmed> 8332212 </pubmed></ref>。一方、C.S.氏の遺伝子変異はKE家の遺伝子変異とは異なり、''FOXP2''遺伝子上にて転座が生じたためにDNA結合領域が壊されている<ref name=Lai2001 />。 | ||
Foxp2タンパク質の生体における機能を知るため、発生工学的に遺伝子機能を欠損させたノックアウトマウスや<ref name=French2007 />[18] | Foxp2タンパク質の生体における機能を知るため、発生工学的に遺伝子機能を欠損させたノックアウトマウスや<ref name=French2007 />[18]、KE家に見られる遺伝子変異に対応した変異(R552H)に置換したノックインマウスが作製された<ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref>。''Foxp2''のノックアウトマウスでは小脳の縮小が見られた<ref name=Clark1993><pubmed>8332212</pubmed></ref>。同様に''Foxp2''の変異ノックインホモ接合マウス(R552H/R552H)でも小脳の縮小、小脳[[プルキンエ細胞]]数の減少、さらにプルキンエ細胞の[[樹状突起]]が存在する分子層において、[[シナプス前部]]の分子マーカーである[[シナプトフィジン]]の発現量も減少していた<ref name=Fujita2008 />。またホモ接合ノックインマウスは新生仔が発する[[超音波]]による鳴き声([[ultrasonic vocalization]], [[USV]])の減少という表現型が得られた<ref name=Fujita2008 />。一方、ヘテロ接合ノックインマウスR552H/+では、形態的に小脳は正常なマウスとほとんど変わらなかったが、行動学的には、全般的な運動機能の障害や、線条体と小脳の神経回路における[[シナプス可塑性]]の異常、ホモ接合ノックインマウスに比べて軽度なUSVの異常が見られた<ref name=Fujita2008 /><ref name=Groszer2008 />。 | ||
====FOXP2発現に依拠した神経回路モデル==== | ====FOXP2発現に依拠した神経回路モデル==== | ||
141行目: | 140行目: | ||
====鳴禽の歌学習==== | ====鳴禽の歌学習==== | ||
[[ファイル:Sugiyama&Osumi_fig4.jpg|300px|thumb|'''図4.鳴禽類の歌学習に関わる神経回路の模式図''']] | [[ファイル:Sugiyama&Osumi_fig4.jpg|300px|thumb|'''図4.鳴禽類の歌学習に関わる神経回路の模式図''']] | ||
鳴禽は、生得的に歌うだけでなく、[[模倣]]することを通して歌学習を行う。鳴禽が歌うことに関わる脳領域にFoxP2の発現が見られることが報告されている(詳細は後述)。このことから種間を超えたFOXP2/FoxP2の類似点に注目が集まり、研究が進められてきた。進化の過程で哺乳類と鳥類が分かれたのは3億年前と言われている。鳴禽の一種であるゼブラフィンチ(''[[Taeniopygia guttata]]'')とマウスのFoxp2タンパク質の違いは5アミノ酸であり、ゼブラフィンチとヒトでは8アミノ酸異なる<ref name=Haesler2004 /> | 鳴禽は、生得的に歌うだけでなく、[[模倣]]することを通して歌学習を行う。鳴禽が歌うことに関わる脳領域にFoxP2の発現が見られることが報告されている(詳細は後述)。このことから種間を超えたFOXP2/FoxP2の類似点に注目が集まり、研究が進められてきた。進化の過程で哺乳類と鳥類が分かれたのは3億年前と言われている。鳴禽の一種であるゼブラフィンチ(''[[Taeniopygia guttata]]'')とマウスのFoxp2タンパク質の違いは5アミノ酸であり、ゼブラフィンチとヒトでは8アミノ酸異なる<ref name=Haesler2004 />。つまり、ヒトとゼブラフィンチの間でFOXP2/FoxP2タンパク質は98%が同一である。また、ゼブラフィンチ脳内でのFoxP2の発現パターンはヒト胎児脳の発現パターンと非常に類似していることが報告されている<ref name=Teramitsu2004 />。 | ||
鳴禽の歌学習に関わる神経回路においてFoxP2が発現していることは非常に興味深い。ヒトの前頭葉-線条体経路と相同の神経回路が鳴禽の脳内に存在する。ヒトの大脳皮質に相当する鳥類の[[皮質領野]]([[high vocal center]], [[HVC]])とヒトの線条体に相当する鳥類の[[Area X]]にFoxP2が発現している[23]。HVCからArea Xへ、Area Xは視床の[[背外側視床内側核]]([[DLM]]核]])へ、DLM核は皮質の前線条体の[[外側大細胞部]]([[LMAN]])へと[[軸索]]が投射され、LMANは歌の生成に関わる神経回路に軸索投射する('''図4''')<ref name=Scharff2004><pubmed> 15313783 </pubmed></ref> | 鳴禽の歌学習に関わる神経回路においてFoxP2が発現していることは非常に興味深い。ヒトの前頭葉-線条体経路と相同の神経回路が鳴禽の脳内に存在する。ヒトの大脳皮質に相当する鳥類の[[皮質領野]]([[high vocal center]], [[HVC]])とヒトの線条体に相当する鳥類の[[Area X]]にFoxP2が発現している[23]。HVCからArea Xへ、Area Xは視床の[[背外側視床内側核]]([[DLM]]核]])へ、DLM核は皮質の前線条体の[[外側大細胞部]]([[LMAN]])へと[[軸索]]が投射され、LMANは歌の生成に関わる神経回路に軸索投射する('''図4''')<ref name=Scharff2004><pubmed> 15313783 </pubmed></ref>。またFoxP2はArea Xに発現があるだけでなく、鳴禽の歌学習時に発現量が上昇する<ref name=Haesler2004 />。HVCとLMANからの投射がある[[終脳核]]([[robustus arcopallialis]], RA)は歌の機能に関わる[[運動ニューロン]]に投射する<ref name=Scharff2004 /><ref name=Teramitsu2004 />。 | ||
FoxP2が鳴禽の歌学習と歌の制御にどのような影響を与えるのか、[[ノックダウン]](KD)実験が行われた。胎生期から''Foxp2''遺伝子を欠損した遺伝子組換え動物では、''Foxp2''遺伝子が欠損した影響が蓄積してしまうため、特定の時期(例. 歌を学習する幼若期、歌の学習を完了した成熟期など)におけるFoxp2の機能を正確に調べることが難しい。そこで''FoxP2''の発現を抑制するタイミングを任意に決めることができる[[ウイルスベクター]]が用いられた。幼若期のゼブラフィンチは、成熟したゼブラフィンチの歌を模倣することで歌を学習する。[[レンチウイルスベクター]]によってArea Xに局在している神経細胞の''FoxP2''をKDすると、歌の模倣が阻害されるという結果が得られた<ref name=Haesler2007><pubmed>18052609</pubmed></ref> | FoxP2が鳴禽の歌学習と歌の制御にどのような影響を与えるのか、[[ノックダウン]](KD)実験が行われた。胎生期から''Foxp2''遺伝子を欠損した遺伝子組換え動物では、''Foxp2''遺伝子が欠損した影響が蓄積してしまうため、特定の時期(例. 歌を学習する幼若期、歌の学習を完了した成熟期など)におけるFoxp2の機能を正確に調べることが難しい。そこで''FoxP2''の発現を抑制するタイミングを任意に決めることができる[[ウイルスベクター]]が用いられた。幼若期のゼブラフィンチは、成熟したゼブラフィンチの歌を模倣することで歌を学習する。[[レンチウイルスベクター]]によってArea Xに局在している神経細胞の''FoxP2''をKDすると、歌の模倣が阻害されるという結果が得られた<ref name=Haesler2007><pubmed>18052609</pubmed></ref>。 | ||
''FoxP2''だけでなく、''FoxP1''および''FoxP4''のKD実験も実施され、[[歌学習]]への影響の違いが検討された。Area X内の多くの神経細胞において、FoxP2陽性細胞はFoxP1およびFoxP4を共発現している<ref name=Mendoza2015 /> | ''FoxP2''だけでなく、''FoxP1''および''FoxP4''のKD実験も実施され、[[歌学習]]への影響の違いが検討された。Area X内の多くの神経細胞において、FoxP2陽性細胞はFoxP1およびFoxP4を共発現している<ref name=Mendoza2015 />。前述したように、FoxP2はFoxP2同士のホモダイマー、またはFoxP1、FoxP4とのヘテロダイマーを形成して機能する<ref name=Mendoza2017 />。''FoxP2'', ''FoxP1'', ''FoxP4''のどれか1つをKDすると歌学習は阻害されたのが、それぞれのKDによる表現型は部分的に同じではあるものの若干異なるという結果が得られた。<ref name=Norton2019><pubmed>31641053</pubmed></ref>。 | ||
一方、成熟期のゼブラフィンチは文脈依存的に歌の音節を変動させることが知られており、メスに求愛するときに歌っているときと比べて、単独で歌っているときは歌の音節の変動が大きくなる<ref name=Kao2006><pubmed>16723412</pubmed></ref><ref name=Kao2005><pubmed>15703748</pubmed></ref> | 一方、成熟期のゼブラフィンチは文脈依存的に歌の音節を変動させることが知られており、メスに求愛するときに歌っているときと比べて、単独で歌っているときは歌の音節の変動が大きくなる<ref name=Kao2006><pubmed>16723412</pubmed></ref><ref name=Kao2005><pubmed>15703748</pubmed></ref>。しかし、Area Xの''FoxP2''をKDすると、この2つの文脈同士の違いが見られなくなったので、FoxP2は歌の音節変動の制御に寄与していることが示唆された<ref name=Murugan2013><pubmed>24268418</pubmed></ref>。 | ||
==進化== | ==進化== | ||
155行目: | 154行目: | ||
FOXP2のアミノ酸置換をもとに予測されるのは、ヒト特有のアミノ酸置換がFOXP2の機能を変えたであろうということである。例えば325番目のアスパラギンからセリンへの置換は[[リン酸]]化の部位を付与し、[[転写抑制因子]]としての機能に影響を与えた可能性がある。しかしながら、ヒト特有のアミノ酸置換が現代人の言語・発話機能に与えた影響については未だ明らかにされていない。また、[[非コード領域]]における遺伝子変異が、どのようにFoxp2の発現領域を変えたかについても、まだ未知となっている<ref name=Enard2002 /><ref name=Zhang2002 />。 | FOXP2のアミノ酸置換をもとに予測されるのは、ヒト特有のアミノ酸置換がFOXP2の機能を変えたであろうということである。例えば325番目のアスパラギンからセリンへの置換は[[リン酸]]化の部位を付与し、[[転写抑制因子]]としての機能に影響を与えた可能性がある。しかしながら、ヒト特有のアミノ酸置換が現代人の言語・発話機能に与えた影響については未だ明らかにされていない。また、[[非コード領域]]における遺伝子変異が、どのようにFoxp2の発現領域を変えたかについても、まだ未知となっている<ref name=Enard2002 /><ref name=Zhang2002 />。 | ||
上記のヒトFOXP2特有のアミノ酸置換をマウスのFoxp2に導入した研究が報告されている。ヒトFOXP2特有のアミノ酸置換(T303N, N325S)を部分的に模倣したオーソログをもつ遺伝子組換えマウス(''Foxp2''<sup>hum/hum</sup>マウス: T302N, N324S)が作製され、その表現型が調べられた<ref name=Enard2009><pubmed>19490899</pubmed></ref> | 上記のヒトFOXP2特有のアミノ酸置換をマウスのFoxp2に導入した研究が報告されている。ヒトFOXP2特有のアミノ酸置換(T303N, N325S)を部分的に模倣したオーソログをもつ遺伝子組換えマウス(''Foxp2''<sup>hum/hum</sup>マウス: T302N, N324S)が作製され、その表現型が調べられた<ref name=Enard2009><pubmed>19490899</pubmed></ref>。''Foxp2''<sup>hum/hum</sup>マウスは、''Foxp2'' KOマウスとは異なり、生後3週間で死亡するようなことはなく<ref name=French2007 /><ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref><ref name=Shu2005><pubmed>15983371</pubmed></ref>、多くの生理学的パラメータおよび行動において、''Foxp2''<sup>hum/hum</sup>マウスと野生型マウスとの間に違いは見られなかった。ただし、[[探索行動]]の低下とUSVのパターンが異なるという結果が得られた。これらの''Foxp2''<sup>hum/hum</sup>マウスの行動レベルでの表現型は、''Foxp2''<sup>wt/KO</sup>マウスとは真逆であったことから、Foxp2の部分的なアミノ酸置換(T302N, N324S)は機能欠損したFoxp2とは異なることが示唆されている。野生型と比べて、''Foxp2''<sup>hum/hum</sup>マウス大脳基底核における[[中型有棘神経細胞]]([[medium spiny neuron]], [[MSN]])の[[樹状突起]]は長い、[[シナプス長期抑制]]([[LTD]])がより強く生じるといったことが報告されている。''Foxp2''<sup>hum/hum</sup>マウスのMSNのこれらの性質は、Foxp2が皮質脊髄路の発達と機能に関与するという報告と一致している<ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=French2012><pubmed>21876543</pubmed></ref><ref name=French2019><pubmed>30108312</pubmed></ref><ref name=Chen2016><pubmed>27595386</pubmed></ref><ref name=Hachigian2017><pubmed>29212017</pubmed></ref><ref name=vanRhijn2018><pubmed>30187194</pubmed></ref>。 | ||
2002年に発表された[[wd:Wolfgang Enard|Enard]]らの研究から<ref name=Enard2002 /> | 2002年に発表された[[wd:Wolfgang Enard|Enard]]らの研究から<ref name=Enard2002 />、FOXP2の現生人類特有の2つのアミノ酸置換が、言語・発話機能の進化の要因である、という考え方が広まり、定着した。しかし、近年の研究から、この考え方を改める必要性が提示されている。FOXP2が言語・発話機能の進化において重要だと考えられるようになったのは、''FOXP2''遺伝子の[[選択的スイープ]](selective sweep、ある集団において、新規の有益な変異が、塩基配列の多様性を減少させること)は100-200万年前に生じたとする結果が報告されたからである<ref name=Enard2002 />。100-200万年前とは、現生人類が出現した、または出現した後の期間に該当する<ref name=Klein2010>'''Richard G. Klein. (1989).'''<br>The Human Career, Human Biological and Cultural Origins<br>Univ, Chicago Press. ISBN-10 : 0226439658</ref>(Klein, 1989, the Human Career, Human Biological and Cultural Origins, Unic, Chicago Press)。従って、現生人類が出現してから生じた''FOXP2''遺伝子の選択的スイープが言語・発話機能の進化において重要な役割を果たしている、と考えられるようになった。 | ||
現生人類の祖先と[[ネアンデルタール人]]とは400,000 - 700,000年前に分かれたと考えられている。[[w:Johannes Krause|Krause]]らの研究によって、現生人類とネアンデルタール人の''FOXP2''配列(Exon7の911と977番目の塩基を含むDNA領域。このDNA領域から、現生人類特有のアミノ酸配列が生み出される。)は非常に類似していることが明らかにされた<ref name=Krause2007><pubmed>17949978</pubmed></ref> | 現生人類の祖先と[[ネアンデルタール人]]とは400,000 - 700,000年前に分かれたと考えられている。[[w:Johannes Krause|Krause]]らの研究によって、現生人類とネアンデルタール人の''FOXP2''配列(Exon7の911と977番目の塩基を含むDNA領域。このDNA領域から、現生人類特有のアミノ酸配列が生み出される。)は非常に類似していることが明らかにされた<ref name=Krause2007><pubmed>17949978</pubmed></ref>。この結果は、''FOXP2''の選択的スイープが生じたのが比較的最近とするEnardらの仮説(100,000 - 200,000年前)に反するものであった。Krauseらの研究によって、現生人類とネアンデルタール人の共通の祖先の時代に、''FOXP2''の選択的スイープが生じたことが示唆された。 | ||
さらに、近年、''FOXP2''の選択的スイープが比較的最近生じたとする仮説を支持しないさらなる知見が提示された。巨大な次世代型遺伝情報データベース ([https://www.internationalgenome.org The 1000 Genomes project Consortium])<ref name=Henn2016><pubmed>26712023</pubmed></ref> | さらに、近年、''FOXP2''の選択的スイープが比較的最近生じたとする仮説を支持しないさらなる知見が提示された。巨大な次世代型遺伝情報データベース ([https://www.internationalgenome.org The 1000 Genomes project Consortium])<ref name=Henn2016><pubmed>26712023</pubmed></ref>を用いたAtkinsonらの研究から、現生人類とネアンデルタール人との間には、現生人類特有のFOXP2のアミノ酸配列の変化は認められない、という結果が示された<ref name=Atkinson2018><pubmed>30078708</pubmed></ref>。また、Atkinsonらは、サンプルの大きさと構成(75%のサンプルを非アフリカ系のヒト由来にする等)を変化させるとEnardら<ref name=Enard2002 />(2002)の結果を再現できることを示した。つまり、サンプルのサイズが小さく、サンプルの構成に偏りがあったためにEnardら<ref name=Enard2002 />(2002)の結果に有意差が生じた可能性が高い。従って、''FOXP2''の選択的スイープが比較的最近生じたとする仮説(100,000 - 200,000年前)は支持されず、現生人類とネアンデルタール人との共通祖先の時期(400,000 - 700,000年前)に選択的スイープは生じたとする仮説が支持されるようになった<ref name=Fisher2019><pubmed>30668952</pubmed></ref>。 | ||
''FOXP2''はヒトの言語・発話機能において非常に重要な役割を果たしていることは明らかである。しかし、たった1つの遺伝子によってヒトの言語・発話機能が進化したと考えるのではなく、より多くの遺伝子によってこの進化が起きたのではないか、という提案がなされている<ref name=Hunter2019><pubmed>30635342</pubmed></ref> | ''FOXP2''はヒトの言語・発話機能において非常に重要な役割を果たしていることは明らかである。しかし、たった1つの遺伝子によってヒトの言語・発話機能が進化したと考えるのではなく、より多くの遺伝子によってこの進化が起きたのではないか、という提案がなされている<ref name=Hunter2019><pubmed>30635342</pubmed></ref>。これからの研究で、ヒト特有の言語・発話機能がどのようにして進化してきたのか、その解明が期待される。 | ||
==関連項目== | ==関連項目== |