「電位依存性カルシウムチャネル」の版間の差分

ナビゲーションに移動 検索に移動
 
(2人の利用者による、間の16版が非表示)
1行目: 1行目:
英語名:calcium channel 独:Kalziumkanal 仏:canal calcique
<div align="right"> 
<font size="+1">澤村 晴志朗、[http://researchmap.jp/nakaoakito 中尾 章人]、[http://researchmap.jp/ymori 森 泰生]</font><br>
''京都大学 工学系研究科 (研究院)''<br>
DOI:<selfdoi /> 原稿受付日:2012年7月31日 原稿完成日:2013年8月12日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>


 [[形質膜]]越えの[[カルシウム]]イオン (Ca<sup>2+</sup>) 流入経路として、異なる活性化機構により開口するカルシウムチャネルが知られる。 それらの中でも[[膜電位]]の[[脱分極]]によって開口する[[電位依存性カルシウムチャネル]] (Voltage-dependent calcium channel, VDCC) が最も深く研究されてきた。VDCCは神経細胞や筋細胞を始めとする興奮性細胞において、様々な分子と相互作用することにより[[神経伝達物質]]放出、[[wikipedia:ja:筋|筋]]収縮、[[遺伝子発現]]など様々なCa<sup>2+</sup>依存性の細胞応答を制御する。 本項目では他のカルシウムチャネルについても言及したい。
英語名:voltage-gated calcium channel 独:spannungsabhängige Kalziumkanal 仏:canal calcique voltage dépendant


== 分類、構造、発現 ==
{{box|text=
 [[形質膜]]越えの[[カルシウム]]イオン (Ca<sup>2+</sup>) 流入経路として、異なる活性化機構により開口するカルシウムチャネルが知られる。 それらの中でも[[膜電位]]の[[脱分極]]によって開口する[[電位依存性カルシウムチャネル]] (Voltage-dependent calcium channel, VDCC) が最も深く研究されてきた。VDCCは神経細胞や筋細胞を始めとする興奮性細胞において、様々な分子と相互作用することにより[[神経伝達物質]]放出、[[wikipedia:ja:筋|筋]]収縮、[[遺伝子発現]]など様々なCa<sup>2+</sup>依存性の細胞応答を制御する。
}}


[[Image:Yasuomori fig 1.jpg|thumb|right|300px|<b>図1. VDCCのサブユニット構造</b><br />高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成する。]]
== 分類、構造、発現  ==


 VDCCは、形質膜の脱分極を感知して活性化開口し、細胞外から細胞内へCa<sup>2+</sup>を選択的に透過させる[[イオンチャネル]]であり、細胞の電気的興奮をCa<sup>2+</sup>依存的な生理応答に変換する役割を担う。開口する電位によりVDCCは、高電位 (~−20 mV)で活性化するL型 (Ca<sub>v</sub>1)および非L型 (Ca<sub>v</sub>2) と低電位 (~−60 mV) で活性するT型 (Ca<sub>v</sub>3) に大別される<ref name="ref1"><pubmed> 6087159 </pubmed></ref><ref><pubmed>2582115</pubmed></ref><ref name="ref3"><pubmed>16382099</pubmed></ref>。高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている (図1)。
[[Image:Yasuomori fig 1.jpg|thumb|right|300px|<b>図1. VDCCのサブユニット構造</b><br />高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成する。]]


=== α<sub>1</sub>サブユニット ===
 VDCCは、形質膜の脱分極を感知して活性化開口し、細胞外から細胞内へCa<sup>2+</sup>を選択的に透過させる[[イオンチャネル]]であり、細胞の電気的興奮をCa<sup>2+</sup>依存的な生理応答に変換する役割を担う。開口する電位によりVDCCは、高電位 (~−20 mV)で活性化するL型 (Ca<sub>v</sub>1)および非L型 (Ca<sub>v</sub>2) と低電位 (~−60 mV) で活性するT型 (Ca<sub>v</sub>3) に大別される<ref name="ref1"><pubmed> 6087159 </pubmed></ref><ref><pubmed>2582115</pubmed></ref><ref name="ref3"><pubmed>16382099</pubmed></ref>。高電位活性化型のVDCCは、α<sub>1</sub>、α<sub>2</sub>δ、βおよびγサブユニットから成るヘテロ4量体を形成すると考えられている (図1)。


[[Image:Yasuomori fig 3.jpg|thumb|right|300px|<b>図2 α<sub>1</sub>サブユニットの進化系統樹</b>]]
=== α<sub>1</sub>サブユニット  ===
 [[電位センサー]]とチャネル孔を有するα<sub>1</sub>サブユニットは、おおよそ2000アミノ酸残基からなるタンパク質であり、[[wikipedia:ja:膜貫通領域|膜貫通領域]]S1~S6の構造単位が4回繰り返す (リピートI~IV) 。S5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。α<sub>1</sub>サブユニットは10種類の異なる遺伝子Ca<sub>v</sub>によりコードされて、電気生理学的特性や薬理学的特性による機能分類 (L, P/Q, N, R, T) に対応付けられている (表1、図2)<ref name="ref4"><pubmed>21746798</pubmed></ref>。
 
{|cellspacing="1" cellpadding="1" border="1"
[[Image:Yasuomori fig 3.jpg|thumb|right|300px|<b>図2. α<sub>1</sub>サブユニットの進化系統樹</b>]]
 
 [[電位センサー]]とチャネル孔を有するα<sub>1</sub>サブユニットは、おおよそ2000アミノ酸残基からなるタンパク質であり、[[wikipedia:ja:膜貫通領域|膜貫通領域]]S1~S6の構造単位が4回繰り返す (リピートI~IV) 。S5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。α<sub>1</sub>サブユニットは10種類の異なる遺伝子Ca<sub>v</sub>によりコードされて、電気生理学的特性や薬理学的特性による機能分類 (L, P/Q, N, R, T) に対応付けられている (表1、図2)<ref name="ref4"><pubmed>21746798</pubmed></ref>。  
 
{| cellspacing="1" cellpadding="1" class="wikitable"
|-
|-
| style="text-align:center" | Ca<sup>2+</sup>電流  
| style="background-color:#a9a9a9; text-align:center" | Ca<sup>2+</sup>電流  
| style="text-align:center" | α<sub>1</sub>サブユニット  
| style="background-color:#a9a9a9; text-align:center" | α<sub>1</sub>サブユニット  
| style="text-align:center" | 遺伝子  
| style="background-color:#a9a9a9; text-align:center" | 遺伝子  
| style="text-align:center" | 選択的阻害剤  
| style="background-color:#a9a9a9; text-align:center" | 選択的阻害剤  
| style="text-align:center" | 主要な発現部位  
| style="background-color:#a9a9a9; text-align:center" | 主要な発現部位  
| style="text-align:center" | 主要な細胞機能
| style="background-color:#a9a9a9; text-align:center" | 主要な細胞機能
|-
|-
| L型<br><br><br><br>
| rowspan="4" | L型  
| Ca<sub>v</sub>1.1<br>Ca<sub>v</sub>1.2<br>Ca<sub>v</sub>1.3<br>Ca<sub>v</sub>1.4
| Ca<sub>v</sub>1.1
| CACNA1S<br>CACNA1C<br>CACNA1D<br>CACNA1F
| CACNA1S
| DHP, PAA, BTZ<br><br><br><br>
| rowspan="4" | DHP, PAA, BTZ  
| 骨格筋<br>心臓、脳<br>内分泌組織、脳<br>網膜
| 骨格筋
| 筋収縮<br>筋収縮、遺伝子発現、シナプス可塑性<br>ホルモン分泌、遺伝子発現、シナプス可塑性<br>神経伝達物質放出
| 筋収縮
|-
|-
| P/Q型<br>N型<br>R型
| Ca<sub>v</sub>1.2
| Ca<sub>v</sub>2.1<br>Ca<sub>v</sub>2.2<br>Ca<sub>v</sub>2.3
| CACNA1C
| CACNA1A<br>CACNA1B<br>CACNA1E
| 心臓、脳
| ω-アガトキシンIVA<br>ω-コノトキシンGVIA<br>SNX-482
| 筋収縮、遺伝子発現、シナプス可塑性
| 脳<br><br><br>
| 神経伝達物質放出、ホルモン分泌<br>神経伝達物質放出、ホルモン分泌<br>神経伝達物質放出
|-
|-
| T型<br><br><br>  
| Ca<sub>v</sub>1.3
| Ca<sub>v</sub>3.1<br>Ca<sub>v</sub>3.2<br>Ca<sub>v</sub>3.3  
| CACNA1D
| CACNA1G<br>CACNA1H<br>CACNA1I
| 内分泌組織、脳
|  
| ホルモン分泌、遺伝子発現、シナプス可塑性
| 脳、心臓<br>脳、心臓<br>脳  
|-
| ペースメイキング、反復性発火<br><br><br>
| Ca<sub>v</sub>1.4
| CACNA1F
| 網膜
| 神経伝達物質放出
|-
| style="background-color:#d3d3d3" | P/Q型
| style="background-color:#d3d3d3" | Ca<sub>v</sub>2.1  
| style="background-color:#d3d3d3" | CACNA1A
| style="background-color:#d3d3d3" | ω-アガトキシンIVA
| style="background-color:#d3d3d3" | 脳
| style="background-color:#d3d3d3" | 神経伝達物質放出、ホルモン分泌
|-
| style="background-color:#d3d3d3" | N型
| style="background-color:#d3d3d3" | Ca<sub>v</sub>2.2
| style="background-color:#d3d3d3" | CACNA1B
| style="background-color:#d3d3d3" | ω-コノトキシンGVIA
| style="background-color:#d3d3d3" | 脳
| style="background-color:#d3d3d3" | 神経伝達物質放出、ホルモン分泌
|-
| style="background-color:#d3d3d3" | R型
| style="background-color:#d3d3d3" | Ca<sub>v</sub>2.3
| style="background-color:#d3d3d3" | CACNA1E
| style="background-color:#d3d3d3" | SNX-482
| style="background-color:#d3d3d3" | 脳
| style="background-color:#d3d3d3" | 神経伝達物質放出
|-
| rowspan="3" | T型
| Ca<sub>v</sub>3.1
| CACNA1G
| rowspan="3" |
| 脳、心臓
| ペースメイキング、反復性発火
|-
| Ca<sub>v</sub>3.2
| CACNA1H
| 脳、心臓
| ペースメイキング、反復性発火
|-
| Ca<sub>v</sub>3.3
| CACNA1I
|
| ペースメイキング、反復性発火
|}
|}
'''表1  α<sub>1</sub>サブユニットの分類とその特性'''<br>α<sub>1</sub>サブユニットには10種類のアイソフォームが存在し、その電気生理学的特性や薬理学的特性によって分類、命名されている。


==== Ca<sub>v</sub>1 (L型) ====
'''表1. α<sub>1</sub>サブユニットの分類とその特性'''<br>α<sub>1</sub>サブユニットには10種類のアイソフォームが存在し、その電気生理学的特性や薬理学的特性によって分類、命名されている。
 
 
==== Ca<sub>v</sub>1 (L型) ====


 [[L型]] (Ca<sub>v</sub>1) は遅い不活性化 (<u>L</u>ong lasting) と大きな (<u>L</u>arge) 単一チャネルコンダクタンスを有することから名づけられた<ref><pubmed>6207437</pubmed></ref>。ジヒドロピリジン(dihydropyridine, DHP)やフェニルアルキルアミン(phenylalkylamine, PAA)、ベンゾチアゼピン(benzothiazepine, BTZ)といった[[カルシウム拮抗薬]]の作用点である。Ca<sub>v</sub>1.1は[[wikipedia:ja:骨格筋|骨格筋]]、Ca<sub>v</sub>1.2は[[wikipedia:ja:心臓|心臓]]や[[脳]]、Ca<sub>v</sub>1.3は[[wikipedia:ja:膵臓|膵臓]]などの[[wikipedia:ja:内分泌組織|内分泌組織]]や脳、Ca<sub>v</sub>1.4は[[網膜]]に主に発現している<ref name="ref3" />。
 [[L型電位依存性カルシウムチャネル|L型]] (Ca<sub>v</sub>1) は遅い不活性化 (<u>L</u>ong lasting) と大きな (<u>L</u>arge) 単一チャネルコンダクタンスを有することから名づけられた<ref><pubmed>6207437</pubmed></ref>。ジヒドロピリジン(dihydropyridine, DHP)やフェニルアルキルアミン(phenylalkylamine, PAA)、ベンゾチアゼピン(benzothiazepine, BTZ)といった[[カルシウム拮抗薬]]の作用点である。Ca<sub>v</sub>1.1は[[wikipedia:ja:骨格筋|骨格筋]]、Ca<sub>v</sub>1.2は[[wikipedia:ja:心臓|心臓]]や[[脳]]、Ca<sub>v</sub>1.3は[[wikipedia:ja:膵臓|膵臓]]などの[[wikipedia:ja:内分泌組織|内分泌組織]]や脳、Ca<sub>v</sub>1.4は[[網膜]]に主に発現している<ref name="ref3" />。


==== Ca<sub>v</sub>2 (N, P/Q, R型) ====
==== Ca<sub>v</sub>2 (N, P/Q, R型) ====


 非L型 (Ca<sub>v</sub>2) には[[N]]、[[P/Q]]、[[R型]]が含まれる。N型 (Ca<sub>v</sub>2.2) には、L型ではない (<u>N</u>on-L) 、[[神経細胞]]に発現する (<u>N</u>euronal) という意味がある<ref name="ref6"><pubmed>2410796</pubmed></ref>。ペプチド性の[[wikipedia:ja:イモ貝|イモ貝]]毒[[ω-コノトキシン GVIA]]により選択的に阻害される<ref><pubmed>2438698</pubmed></ref>。P型は[[小脳]][[プルキンエ]] (<u>P</u>urkinje) 細胞においてDHPとω-コノトキシン GVIAの両方に非感受性のCa<sup>2+</sup>電流として同定された<ref><pubmed>  2545128</pubmed></ref>。クモ毒[[ω-アガトキシンIVA]]によって選択的に阻害される<ref><pubmed>1321648</pubmed></ref>。Q型は、同じ遺伝子 (Ca<sub>v</sub>2.1) の[[wikipedia:ja:スプライスバリアント|スプライスバリアント]]であると考えられており<sup>[11]</sup>、小脳顆粒細胞において初めて電流が同定された。Q型はP型よりω-アガトキシンIVAに対する親和性が低い<ref><pubmed>7722641</pubmed></ref>。R型 (Ca<sub>v</sub>2.3) は小脳顆粒細胞においてDHP、ω-コノトキシン GVIA、ω-アガトキシンIVAによって阻害されない残りの成分 (<u>R</u>esidual) という意味で名づけられ<ref><pubmed>10321243</pubmed></ref>、[[wikipedia:ja:タランチュラ|タランチュラ]]毒素[[SNX-482]]によって選択的に阻害される<ref><pubmed>  9799496</pubmed></ref>。これら非L型のVDCCは広く神経系に発現している<ref name="ref3" />。
 非L型 (Ca<sub>v</sub>2) には[[N型電位依存性カルシウムチャネル|N]]、[[P/Q型電位依存性カルシウムチャネル|P/Q]]、[[R型電位依存性カルシウムチャネル|R型]]が含まれる。


==== Ca<sub>v</sub>3 (T型) ====
 '''N型''' (Ca<sub>v</sub>2.2) には、L型ではない (<u>N</u>on-L) 、[[神経細胞]]に発現する (<u>N</u>euronal) という意味がある<ref name="ref6"><pubmed>2410796</pubmed></ref>。ペプチド性の[[wj:イモ貝|イモ貝]]毒[[ω-コノトキシン GVIA]]により選択的に阻害される<ref><pubmed>2438698</pubmed></ref>。


 [[T型]] (Ca<sub>v</sub>3) は低電位 (~−60 mV) で活性化し、早い不活性化や遅い脱活性化 (一過的: <u>T</u>ransient)、小さい (<u>T</u>iny) 単一チャネルコンダクタンスを特徴とする<ref name="ref1" /><ref name="ref6" />。T型は脳に最も豊富に発現する他、心臓の[[wikipedia:ja:ペースメーカー細胞|ペースメーカー細胞]]にも発現している。T型は高閾値活性化型のVDCCとは異なり、α<sub>2</sub>δ、β、γサブユニットとの相互作用が確認されていない。<br>
 '''P型'''(Ca<sub>v</sub>2.1)は[[小脳]][[プルキンエ細胞|プルキンエ (<u>P</u>urkinje) 細胞]]においてDHPとω-コノトキシン GVIAの両方に非感受性のCa<sup>2+</sup>電流として同定された<ref><pubmed>  2545128</pubmed></ref>。クモ毒[[ω-アガトキシンIVA]]によって選択的に阻害される<ref><pubmed>1321648</pubmed></ref>


=== 副サブユニット (α<sub>2</sub>δ、β、γ) ===
 '''Q型'''は、同じ遺伝子 (Ca<sub>v</sub>2.1) の[[wj:スプライスバリアント|スプライスバリアント]]であると考えられており<ref name="ref11" />、小脳顆粒細胞において初めて電流が同定された。Q型はP型よりω-アガトキシンIVAに対する親和性が低い<ref><pubmed>7722641</pubmed></ref>。


 α<sub>2</sub>δ、βおよびγサブユニットは、チャネル本体であるα<sub>1</sub>サブユニットの発現調節、機能調節や細胞内局在に重要であり、複数の遺伝子によってコードされている<ref name="ref13"><pubmed>3037387</pubmed></ref>。
 '''R型''' (Ca<sub>v</sub>2.3) は小脳顆粒細胞においてDHP、ω-コノトキシン GVIA、ω-アガトキシンIVAによって阻害されない残りの成分 (<u>R</u>esidual) という意味で名づけられ<ref name=ref11><pubmed>10321243</pubmed></ref>、[[wj:タランチュラ|タランチュラ]]毒素[[SNX-482]]によって選択的に阻害される<ref><pubmed>   9799496</pubmed></ref>。これら非L型のVDCCは広く神経系に発現している<ref name="ref3" />。


 大きな細胞外領域を有するα<sub>2</sub>δサブユニットは、単一の遺伝子にコードされるα<sub>2</sub>およびδが[[wikipedia:ja:ジスルフィド結合|ジスルフィド結合]]によって結ばれた二量体で、4種類のアイソフォームが知られる (α<sub>2</sub>δ1-4)。α<sub>2</sub>δサブユニットは、α<sub>1</sub>サブユニットの形質膜への輸送に働いている<ref name="ref14"><pubmed>17403543</pubmed></ref>。α<sub>1</sub>サブユニットのリピートIとIIをつなぐ細胞内リンカーに結合するβサブユニットは、4種類のアイソフォームが知られている (β1-4)。このβサブユニットは、α<sub>1</sub>サブユニットの形質膜における機能的な発現に重要であり<ref name="ref15"><pubmed>1849233</pubmed></ref>、VDCCの活性化や不活性化を促進する<ref name="ref16"><pubmed>20959621</pubmed></ref>。各アイソフォームには複数のスプライスバリアントが存在し、発現分布やチャネル機能の調節に違いがある<ref name="ref16" />。γサブユニットは4回膜貫通のタンパク質であり、VDCCと相互作用することで不活性化曲線をシフトさせる<ref name="ref17"><pubmed>17652770</pubmed></ref>。γサブユニットには8種類のアイソフォームが存在し (γ1~8)、その中のいくつかのアイソフォームは、[[AMPA型グルタミン酸受容体]] (2-amino-3-[3-hydroxy-5-methyl-4-isoxazolyl]propionic acid receptor) の輸送や機能調節を担う主要なタンパク質[[TARPs]] (Transmembrane AMPA receptor regulatory proteins) とも呼ばれている<ref name="ref17" />。
==== Ca<sub>v</sub>3 (T型)  ====
 
 [[T型電位依存性カルシウムチャネル|T型]] (Ca<sub>v</sub>3) は低電位 (~−60 mV) で活性化し、早い不活性化や遅い脱活性化 (一過的: <u>T</u>ransient)、小さい (<u>T</u>iny) 単一チャネルコンダクタンスを特徴とする<ref name="ref1" /><ref name="ref6" />。T型は脳に最も豊富に発現する他、心臓の[[wikipedia:ja:ペースメーカー細胞|ペースメーカー細胞]]にも発現している。T型は高閾値活性化型のVDCCとは異なり、α<sub>2</sub>δ、β、γサブユニットとの相互作用が確認されていない。<br>
 
=== 副サブユニット (α<sub>2</sub>δ、β、γ)  ===
 
 α<sub>2</sub>δ、βおよびγサブユニットは、チャネル本体であるα<sub>1</sub>サブユニットの発現調節、機能調節や細胞内局在に重要であり、複数の遺伝子によってコードされている<ref name="ref13"><pubmed>3037387</pubmed></ref>。
 
==== α<sub>2</sub>δサブユニット ====
 大きな細胞外領域を有するα<sub>2</sub>δサブユニットは、単一の遺伝子にコードされるα<sub>2</sub>およびδが[[wikipedia:ja:ジスルフィド結合|ジスルフィド結合]]によって結ばれた二量体で、4種類のアイソフォームが知られる (α<sub>2</sub>δ1-4)。α<sub>2</sub>δサブユニットは、α<sub>1</sub>サブユニットの形質膜への輸送に働いている<ref name="ref14"><pubmed>17403543</pubmed></ref>
 
==== βサブユニット ====
 α<sub>1</sub>サブユニットのリピートIとIIをつなぐ細胞内リンカーに結合するβサブユニットは、4種類のアイソフォームが知られている (β1-4)。このβサブユニットは、α<sub>1</sub>サブユニットの形質膜における機能的な発現に重要であり<ref name="ref15"><pubmed>1849233</pubmed></ref>、VDCCの活性化や不活性化を促進する<ref name="ref16"><pubmed>20959621</pubmed></ref>。各アイソフォームには複数のスプライスバリアントが存在し、発現分布やチャネル機能の調節に違いがある<ref name="ref16" />
 
==== γサブユニット ====
 γサブユニットは4回膜貫通のタンパク質であり、VDCCと相互作用することで不活性化曲線をシフトさせる<ref name="ref17"><pubmed>17652770</pubmed></ref>。γサブユニットには8種類のアイソフォームが存在し (γ1~8)、その中のいくつかのアイソフォームは、[[AMPA型グルタミン酸受容体]] (2-amino-3-[3-hydroxy-5-methyl-4-isoxazolyl]propionic acid receptor) の輸送や機能調節を担う主要なタンパク質[[TARPs]] (Transmembrane AMPA receptor regulatory proteins) とも呼ばれている<ref name="ref17" />。


== 機能  ==
== 機能  ==
69行目: 136行目:
=== Ca<sub>v</sub>1 (L型)  ===
=== Ca<sub>v</sub>1 (L型)  ===


[[Image:Yasuomori fig 2.jpg|thumb|right|300px|<b>図4. α<sub>1</sub>サブユニットの構造</b><br /> 膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) 。各リピートのS5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。VDCCのβサブユニットはリピートI-II間のループに結合する。N, P/Q型VDCCのリピートII-III間のループには、[[アクティブゾーン]]に存在するタンパク質との相互作用部位 (Synprint)が保存されている。[[カルモジュリン]](calmodulin, CaM)やA kinase anchor protein(AKAP)、[[カルシニューリン]](calcineurin、CaN)はC末端側の細胞質領域に結合することが報告されている。]]  
[[Image:Yasuomori fig 2.jpg|thumb|right|300px|<b>図4. α<sub>1</sub>サブユニットの構造</b><br /> 膜貫通領域S1~S6の構造単位が4回繰り返す (リピートI~IV) 。各リピートのS5領域とS6領域の間がCa<sup>2+</sup>を選択的に透過させるチャネル孔を形成し、S4領域が電位センサーとして働く。VDCCのβサブユニットはリピートI-II間のループに結合する。N, P/Q型VDCCのリピートII-III間のループには、<!--LINK 0:37-->に存在するタンパク質との相互作用部位 (Synprint)が保存されている。<!--LINK 0:38-->(calmodulin, CaM)やA kinase anchor protein(AKAP)、<!--LINK 0:39-->(calcineurin、CaN)はC末端側の細胞質領域に結合することが報告されている。]]  


 L型は、骨格筋や心筋、[[wikipedia:ja:平滑筋|平滑筋]]の収縮に始まり、ホルモンや神経伝達物質の放出、遺伝子発現まで様々な細胞応答に関わる。骨格筋の[[wikipedia:ja:横行小管|横行小管]] (T管) に発現するCa<sub>v</sub>1.1は、脱分極による構造変化を介して[[リアノジン受容体]]を直接活性化し、Ca<sup>2+</sup>放出を誘導することで筋収縮を引き起こす<ref name="ref18"><pubmed>1966760</pubmed></ref>。一方、心筋ではCa<sub>v</sub>1.2からのCa<sup>2+</sup>流入がCa<sup>2+</sup>依存的にリアノジン受容体を活性化し、筋収縮を引き起こす<ref name="ref19"><pubmed>6346892</pubmed></ref>。Ca<sub>v</sub>1.2およびCa<sub>v</sub>1.3は、膵臓のβ細胞におけるインスリン分泌も制御している<ref name="ref20"><pubmed>18511483</pubmed></ref>。また、Ca<sub>v</sub>1.3およびCa<sub>v</sub>1.4は感覚受容細胞の[[リボンシナプス]]における神経伝達物質放出に関与している<ref name="ref4" />。[[聴覚]][[有毛細胞]]ではCa<sub>v</sub>1.3が<ref name="ref21"><pubmed>9405708</pubmed></ref>、網膜の[[光受容細胞]]ではCa<sub>v</sub>1.4が神経伝達物質の放出を制御している<ref name="ref22"><pubmed>9174087</pubmed></ref>。神経細胞においては、L型は細胞体や細胞体近傍の[[樹状突起]]に局在しており、近い位置での細胞内Ca<sup>2+</sup>濃度 ([Ca<sup>2+</sup>]<sub>i</sub>) 上昇の引き金となり、下流で核内の[[シグナル伝達]]、およびCa<sup>2+</sup>濃度上昇を引き起こす<ref name="ref4" />。L型は、遺伝子発現に重要なシグナル分子であるカルモジュリン、AKAPファミリー、[[チロシンリン酸化]]酵素であるSrc、[[脱リン酸化酵素]]である[[カルシニューリン]] (calcineurin, CaN)などと共役して働き (図4)、[[cAMP response element binding protein]] ([[CREB]] ) <ref name="ref23"><pubmed>8980227</pubmed></ref>や[[NFAT]] (Nuclear factor of activated T-cells) といった[[転写因子]]の活性を調節することが知られる<ref name="ref4" /> 。
 L型は、骨格筋や心筋、[[wikipedia:ja:平滑筋|平滑筋]]の収縮に始まり、ホルモンや神経伝達物質の放出、遺伝子発現まで様々な細胞応答に関わる。骨格筋の[[wikipedia:ja:横行小管|横行小管]] (T管) に発現するCa<sub>v</sub>1.1は、脱分極による構造変化を介して[[リアノジン受容体]]を直接活性化し、Ca<sup>2+</sup>放出を誘導することで筋収縮を引き起こす<ref name="ref18"><pubmed>1966760</pubmed></ref>。一方、心筋ではCa<sub>v</sub>1.2からのCa<sup>2+</sup>流入がCa<sup>2+</sup>依存的にリアノジン受容体を活性化し、筋収縮を引き起こす<ref name="ref19"><pubmed>6346892</pubmed></ref>。Ca<sub>v</sub>1.2およびCa<sub>v</sub>1.3は、膵臓のβ細胞におけるインスリン分泌も制御している<ref name="ref20"><pubmed>18511483</pubmed></ref>。また、Ca<sub>v</sub>1.3およびCa<sub>v</sub>1.4は感覚受容細胞の[[リボンシナプス]]における神経伝達物質放出に関与している<ref name="ref4" />。[[聴覚]][[有毛細胞]]ではCa<sub>v</sub>1.3が<ref name="ref21"><pubmed>9405708</pubmed></ref>、網膜の[[光受容細胞]]ではCa<sub>v</sub>1.4が神経伝達物質の放出を制御している<ref name="ref22"><pubmed>9174087</pubmed></ref>。神経細胞においては、L型は細胞体や細胞体近傍の[[樹状突起]]に局在しており、近い位置での細胞内Ca<sup>2+</sup>濃度 ([Ca<sup>2+</sup>]<sub>i</sub>) 上昇の引き金となり、下流で核内の[[シグナル伝達]]、およびCa<sup>2+</sup>濃度上昇を引き起こす<ref name="ref4" />。L型は、遺伝子発現に重要なシグナル分子であるカルモジュリン、AKAPファミリー、[[チロシンリン酸化]]酵素であるSrc、[[脱リン酸化酵素]]である[[カルシニューリン]] (calcineurin, CaN)などと共役して働き (図4)、[[CAMP response element binding protein|cAMP response element binding protein]] ([[CREB]] ) <ref name="ref23"><pubmed>8980227</pubmed></ref>や[[NFAT]] (Nuclear factor of activated T-cells) といった[[転写因子]]の活性を調節することが知られる<ref name="ref4" /> 。  


=== Ca<sub>v</sub>2 (N, P/Q, R型)  ===
=== Ca<sub>v</sub>2 (N, P/Q, R型)  ===


 N、P/Q、R型は主に神経系に発現し、神経伝達物質放出を始めとする神経機能を制御する<ref name="ref24"><pubmed>7901765</pubmed></ref><ref name="ref25"><pubmed>7832825</pubmed></ref>。[[活動電位]]が[[シナプス前終末]]に達すると、N、P/Q、R型などのVDCCを介したCa<sup>2+</sup>流入が引き起こされ、神経伝達物質が放出される。
 N、P/Q、R型は主に神経系に発現し、神経伝達物質放出を始めとする神経機能を制御する<ref name="ref24"><pubmed>7901765</pubmed></ref><ref name="ref25"><pubmed>7832825</pubmed></ref>。[[活動電位]]が[[シナプス前終末]]に達すると、N、P/Q、R型などのVDCCを介したCa<sup>2+</sup>流入が引き起こされ、神経伝達物質が放出される。  


 シナプス前終末において神経伝達物質放出を効率的に制御するため、[[シナプス小胞]]の[[膜融合]]を制御する[[SNARE]] (soluble N-ethylmaleimide-sensitive factor attachment protein receptor ) タンパク質 ([[シンタキシン]]、[[SNAP-25]]、[[VAMP]]/[[シナプトブレビン]])やCa<sup>2+</sup>センサーと考えられている[[シナプトタグミン]]、[[足場タンパク質]]として働く[[RIM]] ([[Rab]]-3 interacting molecule) ファミリー、[[CAST]]、[[Munc13]]、[[バソン]]、[[ピッコロ]]といったタンパク質群とVDCCは巨大タンパク質複合体である、アクティブゾーンを形成している。N、P/Q型のα<sub>1</sub>サブユニットのII-IIIリンカーにはアクティブゾーンに存在するタンパク質との相互作用部位 (Synprint&nbsp;; synaptic protein interaction) が保存されており、シンタキシンやSNAP-25、[[CSP]] (cysteine string protein)、RIM、シナプトブレビンと相互作用する (図4) <ref name="ref4" /><ref name="ref26"><pubmed>16942804</pubmed></ref>。シンタキシンやSNAP-25はsynprint領域を介してVDCCと相互作用し、チャネルの不活性化状態を安定化させることでチャネル活性を抑制することが報告されている<ref name="ref26" />。
 シナプス前終末において神経伝達物質放出を効率的に制御するため、[[シナプス小胞]]の[[膜融合]]を制御する[[SNARE]] (soluble N-ethylmaleimide-sensitive factor attachment protein receptor ) タンパク質 ([[シンタキシン]]、[[SNAP-25]]、[[VAMP]]/[[シナプトブレビン]])やCa<sup>2+</sup>センサーと考えられている[[シナプトタグミン]]、[[足場タンパク質]]として働く[[RIM]] ([[Rab]]-3 interacting molecule) ファミリー、[[CAST]]、[[Munc13]]、[[バソン]]、[[ピッコロ]]といったタンパク質群とVDCCは巨大タンパク質複合体である、アクティブゾーンを形成している。N、P/Q型のα<sub>1</sub>サブユニットのII-IIIリンカーにはアクティブゾーンに存在するタンパク質との相互作用部位 (Synprint&nbsp;; synaptic protein interaction) が保存されており、シンタキシンやSNAP-25、[[CSP]] (cysteine string protein)、RIM、シナプトブレビンと相互作用する (図4) <ref name="ref4" /><ref name="ref26"><pubmed>16942804</pubmed></ref>。シンタキシンやSNAP-25はsynprint領域を介してVDCCと相互作用し、チャネルの不活性化状態を安定化させることでチャネル活性を抑制することが報告されている<ref name="ref26" />。  


 また、βサブユニットもCASTやRIM、シナプトタグミンといったアクティブゾーンに存在するタンパク質と相互作用する (図4) <ref name="ref27"><pubmed>22577167</pubmed></ref><ref name="ref28"><pubmed>17496890</pubmed></ref><ref name="ref29"><pubmed>16525042</pubmed></ref>。これらのタンパク質との相互作用は、神経伝達物質放出複合体を形成し、VDCCの機能修飾も担う。RIM1のα型バリアント (RIM1α) はシナプス小胞のRab-3と相互作用する足場タンパク質であることから、VDCCとシナプス小胞の距離を規定する分子である可能性が高い<ref name="ref30"><pubmed>    9252191</pubmed></ref>。4種類のRIM (RIM1~4) はどれもVDCCの不活性化を著しく遅らせることでCa<sup>2+</sup>流入量を増加させる<ref name="ref28" />。このように、VDCCはアクティブゾーンのタンパク質と共役して働くことで、高効率的に神経伝達物質放出やシナプス可塑性を制御すると考えられる。
 また、βサブユニットもCASTやRIM、シナプトタグミンといったアクティブゾーンに存在するタンパク質と相互作用する (図4) <ref name="ref27"><pubmed>22577167</pubmed></ref><ref name="ref28"><pubmed>17496890</pubmed></ref><ref name="ref29"><pubmed>16525042</pubmed></ref>。これらのタンパク質との相互作用は、神経伝達物質放出複合体を形成し、VDCCの機能修飾も担う。RIM1のα型バリアント (RIM1α) はシナプス小胞のRab-3と相互作用する足場タンパク質であることから、VDCCとシナプス小胞の距離を規定する分子である可能性が高い<ref name="ref30"><pubmed>    9252191</pubmed></ref>。4種類のRIM (RIM1~4) はどれもVDCCの不活性化を著しく遅らせることでCa<sup>2+</sup>流入量を増加させる<ref name="ref28" />。このように、VDCCはアクティブゾーンのタンパク質と共役して働くことで、高効率的に神経伝達物質放出やシナプス可塑性を制御すると考えられる。  


=== Ca<sub>v</sub>3 (T型)  ===
=== Ca<sub>v</sub>3 (T型)  ===


 T型は、一過的にCa<sup>2+</sup>を流入させることで、活動電位の発生パターンを調節する。心臓の[[洞房結節]]に存在するペースメーカー細胞における拍動の形成や<ref name="ref31"><pubmed>16690884</pubmed></ref>、[[睡眠]]時の特徴的な[[脳波]]を形成する[[視床]]のリレー細胞における周期的な発火に関わっている<ref name="ref32"><pubmed>9570789</pubmed></ref>。
 T型は、一過的にCa<sup>2+</sup>を流入させることで、活動電位の発生パターンを調節する。心臓の[[洞房結節]]に存在するペースメーカー細胞における拍動の形成や<ref name="ref31"><pubmed>16690884</pubmed></ref>、[[睡眠]]時の特徴的な[[脳波]]を形成する[[視床]]のリレー細胞における周期的な発火に関わっている<ref name="ref32"><pubmed>9570789</pubmed></ref>。  


== 疾患との関係 ==
== 疾患との関係 ==


 Ca<sub>v</sub>1.1遺伝子 (''CACNA1S'') は、骨格筋の機能不全から発作的な筋力低下症状を示す[[低カリウム性周期性四肢麻痺]]の原因遺伝子である。
 Ca<sub>v</sub>1.1遺伝子 (''CACNA1S'') は、骨格筋の機能不全から発作的な筋力低下症状を示す[[低カリウム性周期性四肢麻痺]]の原因遺伝子である。  


 Ca<sub>v</sub>1.2遺伝子 (''CACNA1C'') は、心臓の[[wikipedia:ja:QT時間|QT延長]]や、[[wikipedia:ja:合指|合指]]、[[自閉症]]といった症状を示す[[Timothy症候群]]の原因遺伝子である<ref name="ref4" /><ref name="ref33"><pubmed>15000527</pubmed></ref>。
 Ca<sub>v</sub>1.2遺伝子 (''CACNA1C'') は、心臓の[[wikipedia:ja:QT時間|QT延長]]や、[[wikipedia:ja:合指|合指]]、[[自閉症]]といった症状を示す[[Timothy症候群]]の原因遺伝子である<ref name="ref4" /><ref name="ref33"><pubmed>15000527</pubmed></ref>。  


 Ca<sub>v</sub>2.1遺伝子 (''CACNA1A'') は、様々な遺伝子疾患(御確認下さい)、運動失調を呈する[[脊髄小脳失調症]]6型、[[家族性偏頭痛]]1型、発作性[[小脳失調]]を呈する[[反復発作性失調症]]2型などの原因遺伝子である。また、運動失調や[[てんかん]]症状を呈する変異マウスtottering、leaner、rolling Nagoyaの原因遺伝子でもある<ref name="ref31" />。
 Ca<sub>v</sub>2.1遺伝子 (''CACNA1A'') は、運動失調を呈する[[脊髄小脳失調症]]6型、[[家族性偏頭痛]]1型、発作性[[小脳失調]]を呈する[[反復発作性失調症]]2型などの原因遺伝子である。また、運動失調や[[てんかん]]症状を呈する変異マウスtottering、leaner、rolling Nagoyaの原因遺伝子でもある<ref name="ref31" />。  


 Ca<sub>v</sub>3.1遺伝子 (''CACNA1G'') は、[[若年ミオクロニーてんかん]]の原因遺伝子である。
 Ca<sub>v</sub>3.1遺伝子 (''CACNA1G'') は、[[若年ミオクロニーてんかん]]の原因遺伝子である。  


 Ca<sub>v</sub>3.2遺伝子 (''CACNA1H'') は、[[小児欠神てんかん]]や[[突発性全般てんかん]]、また自閉症スペクトラム障害との関連が示唆されている<ref name="ref34"><pubmed>    19071165</pubmed></ref>。
 Ca<sub>v</sub>3.2遺伝子 (''CACNA1H'') は、[[小児欠神てんかん]]や[[突発性全般てんかん]]、また自閉症スペクトラム障害との関連が示唆されている<ref name="ref34"><pubmed>    19071165</pubmed></ref>。


== その他のCa<sup>2+</sup>チャネル ==
== その他のCa<sup>2+</sup>チャネル ==


=== TRP チャネル ===
=== TRP チャネル ===


 [[TRPチャネル]] (Transient receptor potential channel)は、[[ショウジョウバエ]]の光受容応答変異株の原因遺伝子として発見されたチャネル分子である<ref name="ref35"><pubmed>2516726</pubmed></ref>。[[wikipedia:ja:哺乳類|哺乳類]]においては28種の遺伝子が同定され、C, M, P, ML, V, Aといった6つのサブファミリーを構成する。TRPチャネルは、温度、機械刺激、痛み、酸-塩基といった種々の物理化学的刺激によって活性化されるカチオンチャネルファミリーを形成している。その多くがCa<sup>2+</sup>透過能を有し、中枢・末梢神経系を始めとするほぼ全ての組織に発現が見られる。TRPCやTRPMファミリーに属するTRPチャネルを介したCa<sup>2+</sup>シグナルは、神経細胞において重要な役割を担っていることが示されている。[[受容体]]刺激、[[細胞内Ca2+ストア|細胞内Ca<sup>2+</sup>ストア]]枯渇、および他のタンパク質との相互作用によって活性化される[[TRPCチャネル]] (TRPC1~7) を介したCa<sup>2+</sup>流入が、神経細胞の分化、[[増殖]]、生存や[[神経突起]]の伸長・誘導、[[スパイン]]形成といった多くの神経機能に関連する<ref name="ref36"><pubmed>19999578</pubmed></ref>。一方、[[酸化ストレス]]や温度、pH、機械刺激などで活性化されるTRPMチャネル (TRPM1~8)を介したCa<sup>2+</sup>流入が、神経細胞の成長・発達や[[細胞死]]に関連する<ref name="ref36" />。
 [[TRPチャネル]] (Transient receptor potential channel)は、[[ショウジョウバエ]]の光受容応答変異株の原因遺伝子として発見されたチャネル分子である<ref name="ref35"><pubmed>2516726</pubmed></ref>。[[wikipedia:ja:哺乳類|哺乳類]]においては28種の遺伝子が同定され、C, M, P, ML, V, Aといった6つのサブファミリーを構成する。TRPチャネルは、温度、機械刺激、痛み、酸-塩基といった種々の物理化学的刺激によって活性化されるカチオンチャネルファミリーを形成している。その多くがCa<sup>2+</sup>透過能を有し、中枢・末梢神経系を始めとするほぼ全ての組織に発現が見られる。TRPCやTRPMファミリーに属するTRPチャネルを介したCa<sup>2+</sup>シグナルは、神経細胞において重要な役割を担っていることが示されている。[[受容体]]刺激、[[細胞内Ca2+ストア|細胞内Ca<sup>2+</sup>ストア]]枯渇、および他のタンパク質との相互作用によって活性化される[[TRPCチャネル]] (TRPC1~7) を介したCa<sup>2+</sup>流入が、神経細胞の分化、[[増殖]]、生存や[[神経突起]]の伸長・誘導、[[スパイン]]形成といった多くの神経機能に関連する<ref name="ref36"><pubmed>19999578</pubmed></ref>。一方、[[酸化ストレス]]や温度、pH、機械刺激などで活性化されるTRPMチャネル (TRPM1~8)を介したCa<sup>2+</sup>流入が、神経細胞の成長・発達や[[細胞死]]に関連する<ref name="ref36" />。  


=== ストア作動性Ca<sup>2+</sup>チャネル ===
=== ストア作動性Ca<sup>2+</sup>チャネル ===


 ストア作動性Ca<sup>2+</sup>チャネル(SOCチャネル、store-operated calcium channel&nbsp;: SOC channel, calcium release-activated calcium channel&nbsp;: CRAC channel) は、[[小胞体]]Ca<sup>2+</sup>ストアのCa<sup>2+</sup>枯渇によって活性化開口される細胞外からのCa<sup>2+</sup>流入経路である。TRPCチャネルがチャネル分子実態として考えられていたが、近年、[[wikipedia:ja:重症複合免疫不全症|重症複合免疫不全症]](severe combined immunodeficiency&nbsp;: SCID)の患者から遺伝子変異が発見された[[Orai1]]がSOCチャネルとして同定され、主要な分子実態として認識され始めている。Orai (Orai1, 2, 3) は、小胞体のCa<sup>2+</sup>枯渇を感知した小胞体Ca<sup>2+</sup>センサー分子stromal interacting molecule(STIM, STIM1, 2) との相互作用を介して4量体を形成し、活性化開口する<ref name="ref37"><pubmed>19488056</pubmed></ref>。
 [[ストア作動性Ca2+チャネル|ストア作動性Ca<sup>2+</sup>チャネル]](SOCチャネル、store-operated calcium channel&nbsp;: SOC channel, calcium release-activated calcium channel&nbsp;: CRAC channel) は、[[小胞体]]Ca<sup>2+</sup>ストアのCa<sup>2+</sup>枯渇によって活性化開口される細胞外からのCa<sup>2+</sup>流入経路である。TRPCチャネルがチャネル分子実態として考えられていたが、近年、[[wikipedia:ja:重症複合免疫不全症|重症複合免疫不全症]](severe combined immunodeficiency&nbsp;: SCID)の患者から遺伝子変異が発見された[[Orai1]]がSOCチャネルとして同定され、主要な分子実態として認識され始めている。Orai (Orai1, 2, 3) は、小胞体のCa<sup>2+</sup>枯渇を感知した小胞体Ca<sup>2+</sup>センサー分子stromal interacting molecule(STIM, STIM1, 2) との相互作用を介して4量体を形成し、活性化開口する<ref name="ref37"><pubmed>19488056</pubmed></ref>。  


 SOCチャネルによるCa<sup>2+</sup>流入 (SOC流入) は、免疫細胞における主要なCa<sup>2+</sup>流入経路であり、免疫機能に必須であるとされ、[[wikipedia:ja:抗原受容体|抗原受容体]]といった受容体活性化の下流でSOC流入が誘導される。これは持続的な [Ca<sup>2+</sup>]<sub>i</sub>上昇によりCa<sup>2+</sup>[[シグナル伝達]]を担い、転写因子NFATの活性を調節することが知られる。近年になって、神経細胞や筋細胞といった興奮性細胞においてもSOC流入が確認され、種々の生理機能や疾患との関連が調べられている<ref name="ref37" />。
 SOCチャネルによるCa<sup>2+</sup>流入 (SOC流入) は、免疫細胞における主要なCa<sup>2+</sup>流入経路であり、免疫機能に必須であるとされ、[[wikipedia:ja:抗原受容体|抗原受容体]]といった受容体活性化の下流でSOC流入が誘導される。これは持続的な [Ca<sup>2+</sup>]<sub>i</sub>上昇によりCa<sup>2+</sup>[[シグナル伝達]]を担い、転写因子NFATの活性を調節することが知られる。近年になって、神経細胞や筋細胞といった興奮性細胞においてもSOC流入が確認され、種々の生理機能や疾患との関連が調べられている<ref name="ref37" />。  


== 関連項目 ==
== 関連項目 ==


*[[イオンチャネル]]  
*[[イオンチャネル]]


*[[電位依存性チャネル]]  
*[[電位依存性チャネル]]


*[[NMDA型グルタミン酸受容体]]  
*[[NMDA型グルタミン酸受容体]]


*[[イオンチャネル型グルタミン酸受容体]]
*[[イオンチャネル型グルタミン酸受容体]]
121行目: 188行目:
== 参考文献  ==
== 参考文献  ==


<references />  
<references />
 
 
(執筆者:澤村晴志朗、中尾章人、森泰生 担当編集委員:尾藤晴彦)

案内メニュー