「グリア細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
107行目: 107行目:
オリゴデンドロサイトの重要な役割は神経軸索に絶縁テープのように巻き付き、神経信号の伝導効率を上げることである。この巻き付いた部分はミエリン髄鞘(myelin sheath)とよばれ、250~1000ミクロンほどの幅を持っている。髄鞘を持つ神経線維は有髄神経線維(myelinated nerve fiber)と呼ばれる。
オリゴデンドロサイトの重要な役割は神経軸索に絶縁テープのように巻き付き、神経信号の伝導効率を上げることである。この巻き付いた部分はミエリン髄鞘(myelin sheath)とよばれ、250~1000ミクロンほどの幅を持っている。髄鞘を持つ神経線維は有髄神経線維(myelinated nerve fiber)と呼ばれる。
中枢神経系では一つのオリゴデンドログリアが、少ない場合は1から2本、多い場合は30本ほどの神経軸索に突起を伸ばしてミエリン髄鞘を作っている。神経信号は髄鞘と髄鞘の間、ランビエー絞輪( node of Ranvier)と呼ばれる部分を跳躍するように伝わっていく(跳躍伝導:saltatory conduction)(図9)。中枢神経系の神経線維はほとんど有髄神経である。この種の髄鞘のおかげで、神経軸索上を伝導する信号の速度は新幹線に優るとも劣らないものになる(秒速100メーター、時速360キロ)。因みにこの髄鞘を持たない神経軸索(自律神経の節後線維)での伝導速度は秒速1メーター程度、時速3.6キロだから、ゆっくりと歩く程度である(図9)。無髄神経で速度を高めるには神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線はこのように太い神経線維では不可能である。
中枢神経系では一つのオリゴデンドログリアが、少ない場合は1から2本、多い場合は30本ほどの神経軸索に突起を伸ばしてミエリン髄鞘を作っている。神経信号は髄鞘と髄鞘の間、ランビエー絞輪( node of Ranvier)と呼ばれる部分を跳躍するように伝わっていく(跳躍伝導:saltatory conduction)(図9)。中枢神経系の神経線維はほとんど有髄神経である。この種の髄鞘のおかげで、神経軸索上を伝導する信号の速度は新幹線に優るとも劣らないものになる(秒速100メーター、時速360キロ)。因みにこの髄鞘を持たない神経軸索(自律神経の節後線維)での伝導速度は秒速1メーター程度、時速3.6キロだから、ゆっくりと歩く程度である(図9)。無髄神経で速度を高めるには神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線はこのように太い神経線維では不可能である。
 図9bは有髄神経線維をランビエー絞輪の位置で縦方向に切ったものである。幾重にも巻いたオリゴデンドロサイトの突起が、ランビエー絞輪を挟んで、存在している(パラノード:paranode)。実際に、免疫組織化学的に、活動電位の発現に必要な、電位依存性Na+チャンネルはランビエー絞輪に局在しており、いっぽう。電位依存性K+チャンネル(Kv1.1 、Kv1.2)はパラノードの先、ジャクスタパラノード(Juxta paranode)に局在していることが示されている。
 図9bは有髄神経線維をランビエー絞輪の位置で縦方向に切ったものである。幾重にも巻いたオリゴデンドロサイトの突起が、ランビエー絞輪を挟んで、存在している(パラノード:paranode)。実際に、免疫組織化学的に、活動電位の発現に必要な、電位依存性Na+チャンネルはランビエー絞輪に局在している。一方、電位依存性K+チャンネル(Kv1.1 、Kv1.2)はパラノードの先、ジャクスタパラノード(Juxta paranode)に局在していることが示されている。
 因みに無髄神経で速度を高めるとすると、神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線は極めて高度に発達しており、このように太い神経線維で配線することは不可能である。
 因みに無髄神経で速度を高めるとすると、神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線は極めて高度に発達しており、このように太い神経線維で配線することは不可能である。
 
 
127行目: 127行目:




==オリゴデンドロサイト==
(oligodendrocyte; oligodendroglia):この名前はアストログリアに比べて突起が少ないことに基づいている(図)。日本語では「希突起神経膠細胞」と訳されている。この細胞は前述のようにカハールの弟子である、リオ・オルテガによって発見された(1928)、オルテガはこれらの細胞を第三の脳細胞として発表する。実は彼が第三の脳細胞と分類した中には後述のミクログリア(microglia)も含まれていたのだ。この発表は師であるカハールには受け入れられず、リオ・オルテガは破門の憂き目にあう。しかし、この細胞もアストロサイトとは異なった脳細胞である。ヒトの脳内にはアストロサイトの2倍以上の量が存在し、伝導速度の高速化に寄与し、[[脳神経]]回路における高速情報処理を可能にする重要な細胞である。
 リオ・オルテガはオリゴデントロサイトの突起の数や、細胞体の形態、分布する部位などからI型からⅣ型の四種に分類している。しかし、四種に分類されたオリゴデンドロサイトの基本的な機能には大きな差はないようである。オリゴデンドロサイトのマーカーとしてT4-O抗体やモノクローナル抗体、Ripなど多様な抗体が用いられている。これらのマーカーも発生の段階や存在部位によって発現の程度が異なる。
オリゴデンドロサイトの重要な役割は神経軸索に絶縁テープのように巻き付き、神経信号の伝導効率を上げることである。この巻き付いた部分は[[髄鞘]](myelin sheath)とよばれ、250~1000ミクロンほどの幅を持っている。髄鞘を持つ神経線維は[[有髄神経]]線維(myelinated nerve fiber)と呼ばれる。末梢の有髄神経の形成には[[シュワン細胞]](Schwann cell)が関与する。シュワン細胞はまったく突起を持たない細胞であるが、オリゴデンドロサイトと同種のグリア細胞の一種である。
 中枢神経系では一つのオリゴデンドログリアが、少ない場合は1から2本、多い場合は30本ほどの神経軸索に突起を伸ばして髄鞘を作っている。神経信号は髄鞘と髄鞘の間、[[ランビエー絞輪]]( node of Ranvier)と呼ばれる部分を跳躍するように伝わっていく(跳躍伝導:saltatory conduction)。中枢神経系の神経線維はほとんど有髄神経である。一方、末梢神経軸索にも同様な髄鞘があるが、この細胞はシュワン細胞と呼ばれ、その突起は巻き付いているシート状の部分だけであり、一つのシュワン細胞が一つの髄鞘を作っているのだ。この種の髄鞘のおかげで、神経軸索上を伝導する信号の速度は新幹線に優るとも劣らないものになる(秒速100メーター、時速360キロ)。因みにこの髄鞘を持たない神経軸索(自律神経の節後線維)での伝導速度は秒速1メーター程度、時速3.6キロだから、ゆっくりと歩く程度である(図)。無髄神経で速度を高めるには神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線はこのように太い神経線維では不可能である。
 図は有髄神経線維をランビエー絞輪の位置で縦方向に切ったものである。幾重にも巻いたオリゴデンドロサイトの突起が、ランビエー絞輪を挟んで、存在している(パラノード:paranode)。実際に、[[免疫組織化学]]的に、活動電位の発現に必要な、電位依存性Na+チャンネルはランビエー絞輪に局在しており、いっぽう。電位依存性K+チャンネル([[Kv1.1]] 、[[Kv1.2]])はパラノードの先、ジャクスタパラノード(Juxta paranode)に局在していることが示されている。
 後述のように神経髄鞘の形成は非常にダイナミックに営まれているらしく、これまで考えられてきた以上に脳機能に関与しているらしい。
 
 
===ミクログリア===
===ミクログリア===
144行目: 133行目:




==オリゴデンドロサイトの機能、新しい発見==
===太くなる神経線維が脳の可塑性に関与する===
 音楽家やスポーツ選手など通常の人より訓練を積んだヒトとの脳を核磁気共鳴画像で解析する試みが盛んに行われている。訓練や学習による脳の発達の手がかりを得ようとするものである(文献)。これらの研究対象は当初、神経細胞やそのシナプス層、すなわち[[灰白質]]に置かれていた。しかし、その途上で、驚くべきことに[[白質]]、すなわち神経線維の集まりの部分に明らかな、場合によっては灰白質よりも明瞭な差が発見されたのだ。最初の発見は音楽家の脳の脳梁の拡大であった。脳梁は[[有髄線維]]の束である学習や訓練がその厚みを増すとは何を意味しているのか。神経線維の数が増えている可能性もあるが、むしろ、一本一本の神経線維の太さが増しているのであろうと考えられている。とは言え、神経軸索そのもののサイズが太くなるとは考えられない。とすると、軸索を覆う髄鞘部分が増大する。すなわち、神経軸索を包む髄鞘の巻数が増えたと考えるのが妥当だ。おそらく、巻数が増えて、絶縁の程度が高くなると、伝導速度が増す可能性は高い。実際に最近ではMRIで水分子の拡散運動を画像化し、その拡散の方向依存性が解析されている。[[ミエリン]]化が進むと神経線維に沿った水の拡散の方向性(部分異方性:fractional anisotropy:FA)が高まることを指標とする方法で、詳しく調べらえている。その結果、ジャグリングの練習、試験勉強、楽器の訓練など可塑性を高める試みは脳梁ばかりではなく[[大脳皮質]]や海馬の白質のミエリン化が促進されていることが明らかになってきた(文献)。これは可塑性が決してシナプスだけの現象ではないことを意味し、これまでに積み上げられてきた可塑性のメカニズムに関する理解を根本から変える必要を迫る驚くべき事実として注目されている。
===髄鞘は単に静かに巻いているだけではない===
 前述のように中枢神経系の有髄神経で髄鞘を作るのがオリゴデンドロサイトであり、神経線維の伝導速度を決める重要な要素である。単に神経線維の上に巻き付いているだけと考えられていた髄鞘がもっと積極的に活動していることが示されている。神経活動やアストロサイトの活動の結果細胞外に遊離されるATPまたはその代謝物であるアデノシンに反応し、オリゴデンドロサイトの[[CA2|Ca2]]+レベルを上昇させる。その反応がさらに髄鞘の上を伝導し、他の髄鞘に伝達されるとも報告されているのだ(文献)。このような活動はおそらく脳が活発に活動している時に引き起こされるだろう。しかし、この反応が生じた後どのような形で髄鞘の強化につながるかについては不明であった。
 最近になって、神経軸索がグルタミン酸を遊離し、それが髄鞘に分布するグルタミン酸受容体(NMDA受容体やG-タンパク質共役型受容体)の活性を介して、髄鞘内Ca2+濃度の上昇を引き起こすことが明らかにされている(文献)。このCa2+上昇は髄鞘と神経軸索の結合部に発現するFynキナーゼを活性化し、ミエリンベーシックプロテイン(MBP)の産生を高めるのだ。これは髄鞘の強化が活動依存性に促進されることを強く支持する発見である。同時に、オリゴデンドロサイトが発現しているATPやアデノシンに対する受容体を介した細胞内Ca2+の上昇も同じ機構で髄鞘の強化に寄与している可能性を支持する。
===神経活動の同期に関わる可能性===
 ATPやその代謝産物であるアデノシンによる髄鞘の興奮についてはさらに重要な発見がある。興奮した髄鞘で包まれている軸索における伝導速度を上昇させるのである(文献)。オリゴデンドロサイトはその名の通り、あまり沢山の突起は持たないが、それでも多い場合は30本ほどの突起を繰り出して、神経軸索に髄鞘を作る。もし、この細胞が興奮したら、その細胞が関わる30本の軸索の伝導速度は一気に高まることになる。また、上述のように一つのオリゴデンドロサイトの興奮が隣接するオリゴデンドロサイトに伝搬すれば、ある集団の神経軸索の伝導速度は高められ、それらが送られるシナプス側において、非常に高い同期性を持つことになる。これは特定の情報の伝達効率を集団的に高めるのに有効な方法であり、これまでに考えられてきた伝達効率促進メカニズムとは異なる機能である。
 髄鞘の厚みが増すことによる伝導速度促進および同じオリゴデンドロサイトに支配されている神経軸索間の同期は間違いなく脳機能の向上に関わるはずである。可塑性を支える要素の一つとして注目されるべき機能である。これらの事実はこれまでの脳研究では想像もできなかったさらに高度な可塑性機能であり、その広がりの大きさは計り知れない。今後の研究が楽しみな分野である。
 しかし、一つ、どうしても理解できない点がある。一個のオリゴデンドロサイトから繰り出された複数のシート状突起が、それぞれの軸索に接触した後に、バームクーヘンのような形に幾重にも巻き付くことができるのだろうか?軸索の表面がくるくると回って糸巻きのように巻き取っている仕組みがなければならないが、これはまだ証明されていない。
===NG2と呼ばれる不思議な細胞===
 成熟中枢神経系にはオリゴデンドロサイトの性質を備えながらミエリン髄鞘を作らない細胞も多く見出される。それらの中でオリゴデントロサイト前駆細胞olygodendrocyte progenitor cells (OPC)。この中にNG2[[コンドロイチン硫酸プロテオグリカン]](NG2 condroitin sulfate proteoglycan) を発現する細胞が見出される。さらにNG2を発現したオリゴデントロサイトと区別ができない成熟細胞も存在する。この細胞はNG2細胞と呼ばれている。NG2細胞もミエリン鞘形成に至るものとミエリン鞘を形成しない種類がある。この細胞は白質のも灰白質にも分布しており、時にはアストロサイトのような形態をとっていることもある。しかし、アストロサイトのマーカー蛋白であるGFAP(glial fibrillary acidic protein)は発現しない。
 さらに、重要な事実はこの細胞が中枢損傷部位に集まり、グリア瘢痕(glial sxcar)、グリオーシス(gliosis)を作ることである。このような性質からこの細胞はsynantocyte(synant :ギリシャ語で:接触することを意味する言葉)と命名されたこともあるが、その後、この名前はあまり流布していない(文献)。ニューロンにも似た性質を持っており、この細胞の存在は脳内に分布する多様な機能精細胞の系譜が同じであることを如実に語っている。


==ミクログリアの機能、新しい発見==
==ミクログリアの機能、新しい発見==
34

回編集

案内メニュー