34
回編集
Yoshihisakudo (トーク | 投稿記録) 細編集の要約なし |
Yoshihisakudo (トーク | 投稿記録) 細編集の要約なし |
||
77行目: | 77行目: | ||
===トライパータイトシナプス=== | ===トライパータイトシナプス=== | ||
グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えたトライパータイトシナプス(tripartite synapse:三者間シナプス)という概念である<ref><pubmed>10322493</pubmed></ref> | グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えたトライパータイトシナプス(tripartite synapse:三者間シナプス)という概念である<ref><pubmed>10322493</pubmed></ref>。これまでに述べたアストロサイトの性質を考えれば当然あって然るべき仕組みである。このようなシナプスの存在を考慮に入れて脳における情報処理を考えると、これまでにニューロンのみで作られる回路の上で考えていた脳機能はもっと複雑で奥深いものになる(図6)。 | ||
===シナプス可塑性に及ぼすアストロサイトの役割=== | ===シナプス可塑性に及ぼすアストロサイトの役割=== | ||
86行目: | 86行目: | ||
===名称と形態の特徴=== | ===名称と形態の特徴=== | ||
オリゴデンドロサイト(oligodendrocyte; | オリゴデンドロサイト(oligodendrocyte; oligodendroglia):この名前はアストログリアに比べて突起が少ないことに基づいている(図7)。日本語では「希突起神経膠細胞」と訳されている。この細胞は前述のようにカハールの弟子である、リオ・オルテガによって発見された(1928)、オルテガはこれらの細胞を第三の脳細胞として発表する。実は彼が第三の脳細胞と分類した中には後述のミクログリア(microglia)も含まれていたのだ。この発表は師であるカハールには受け入れられず、リオ・オルテガは破門の憂き目にあう。 | ||
中枢神経系におけるオリゴデンドロサイトの特徴的な形態は、突起が神経軸索に巻き付いてミエリン髄鞘を作っている様子である。成熟脳に分布するすべてのオリゴデンドロサイトが髄鞘を作っているわけではない。図7Bに示すように、見かけは単に突起を伸ばした細胞の形をとっているものも多い。 | |||
===同種の細胞=== | ===同種の細胞=== | ||
97行目: | 97行目: | ||
===オリゴデンドロサイトのマーカー分子=== | ===オリゴデンドロサイトのマーカー分子=== | ||
オリゴデンドロサイトのマーカー分子は多様である。ミエリン髄鞘に特異的なタンパク質、プロテオリピッドプロテインproteolipid protein:PLP)やミエリンベーシックプロテイン(myelin basic protein:MBP)は髄鞘のマーカーとして使われる。その他、特殊な糖脂質、例えばガラクトセレブロシ(Galactocerebroside)やスルファチド(sulfatide)(3-O- | オリゴデンドロサイトのマーカー分子は多様である。ミエリン髄鞘に特異的なタンパク質、プロテオリピッドプロテインproteolipid protein:PLP)やミエリンベーシックプロテイン(myelin basic protein:MBP)は髄鞘のマーカーとして使われる。その他、特殊な糖脂質、例えばガラクトセレブロシ(Galactocerebroside)やスルファチド(sulfatide)(3-O-硫酸化ガラクトシルセラミド)が分布しているので、これがよいマーカー分子になる。前者についてモノクローン抗体O1が、後者についてはモノクローン抗体O4が検出のために利用できる(図7 A,B)。同じくミエリン髄鞘に豊富に存在する酵素類、cyclicnucleotide phosphatase (CNPase)などもよいマーカーとなる。 | ||
===ヒト脳における分布量=== | ===ヒト脳における分布量=== | ||
104行目: | 104行目: | ||
==オリゴデンドロサイトの機能== | ==オリゴデンドロサイトの機能== | ||
===ミエリン髄鞘の形成 神経伝導速度の促進=== | ===ミエリン髄鞘の形成 神経伝導速度の促進=== | ||
オリゴデンドロサイトの重要な役割は神経軸索に絶縁テープのように巻き付き、神経信号の伝導効率を上げることである。この巻き付いた部分はミエリン髄鞘(myelin sheath)とよばれ、250~1000ミクロンほどの幅を持っている。髄鞘を持つ神経線維は有髄神経線維(myelinated nerve fiber) | オリゴデンドロサイトの重要な役割は神経軸索に絶縁テープのように巻き付き、神経信号の伝導効率を上げることである。この巻き付いた部分はミエリン髄鞘(myelin sheath)とよばれ、250~1000ミクロンほどの幅を持っている。髄鞘を持つ神経線維は有髄神経線維(myelinated nerve fiber)と呼ばれ、髄鞘を持たない神経線維は無髄神経線維(nonmyelinated nerve fiber)と呼ばれる。中枢神経系では一つのオリゴデンドログリアが、少ない場合は1から2本、多い場合は30本ほどの神経軸索に突起を伸ばしてミエリン髄鞘を作っている。神経信号は髄鞘と髄鞘の間、ランビエー絞輪( node of Ranvier)と呼ばれる部分を跳躍するように伝わっていく(跳躍伝導:saltatory conduction)(図8)。中枢神経系の神経線維はほとんど有髄神経である。この種の髄鞘のおかげで、神経軸索上を伝導する信号の速度は新幹線に優るとも劣らないものになる(秒速100メーター、時速360キロ)。因みにこの髄鞘を持たない神経軸索(自律神経の節後線維)での伝導速度は秒速1メーター程度、時速3.6キロだから、ゆっくりと歩く程度である(図8)。無髄神経で速度を高めるには神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線はこのように太い神経線維では不可能である。 | ||
図9Aは有髄神経線維をちょうどオリゴデンドロサイトの突起が神経軸索に届いた位置で、横断した電子顕微鏡像である。薄く紙のように広がった先端が四重に巻き付いており、一重分を注意深く見ると、二枚の膜からなっているのが分かる。一方、図9Bは有髄神経を二つの髄鞘の間(無髄状態になっており、ランビエー絞輪と呼ばれる)で縦方向に切ったものである。幾重にも巻いたオリゴデンドロサイトの突起部位が、ランビエー絞輪(Ranvier node)を挟んで、存在している(パラノード:paranode)。実際に、免疫組織化学的に、活動電位の発現に必要な、電位依存性Na+チャンネルはランビエー絞輪に局在している。一方、電位依存性K+チャンネル(Kv1.1 、Kv1.2)はパラノードの先、ジャクスタパラノード(Juxta paranode)に局在していることが示されている(図10)。 | |||
因みに無髄神経で速度を高めるとすると、神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線は極めて高度に発達しており、このように太い神経線維で配線することは不可能である。 | 因みに無髄神経で速度を高めるとすると、神経線維の直径を大きくして、局所電位の大きさを高める必要がある。軟体動物のヤリイカでは速やかに動かす必要のある筋肉への神経線維は無髄であるので、その直径は1mmほどもある。我々の脳内の配線は極めて高度に発達しており、このように太い神経線維で配線することは不可能である。 | ||
127行目: | 126行目: | ||
===名称と形態の特徴=== | ===名称と形態の特徴=== | ||
ミクログリア(microglia)の名称は、この細胞より先に同定されたアストロサイトや、ほぼ同時に発見されたオリゴデンドロサイトに類似の細胞でありながらサイズが小さいことから単純に命名されたものと思われる。見かけの形態の特徴は小さいことと、突起が少ないことであるが、リオ- | ミクログリア(microglia)の名称は、この細胞より先に同定されたアストロサイトや、ほぼ同時に発見されたオリゴデンドロサイトに類似の細胞でありながらサイズが小さいことから単純に命名されたものと思われる。見かけの形態の特徴は小さいことと、突起が少ないことであるが、リオ-オルテガは発見の早い段階にこの細胞にはさらに重要な形態変化があることを発見している。正常な脳の中でのミクログリアは突起を伸ばした形だが、周辺に何らかの障害が生ずると、突起を縮め、細胞体部分が大きくなる「活性化型」にかわり、やがて、アメーバ状に形を変えて、障害部周辺を活発に動き回るようになるのだ(図12)。 | ||
===同種の細胞=== | ===同種の細胞=== | ||
141行目: | 140行目: | ||
===損傷を受けた細胞の除去=== | ===損傷を受けた細胞の除去=== | ||
ミクログリアがリオ・オルテガによって第三の脳細胞としてオリゴデンドロサイトと共に発見されたのは1932年であるが、その後その性質はごく最近になるまでほとんど解明されないままになっていた(図13)。実は、20世紀初頭、アルツハイマー(Alois Arzheimer)や彼の同時代の病理学者達は神経変性が生じている部位に突起のないアメーバ状の細胞が多数浸潤していることに気づいていた。これらは顆粒細胞(granule cells)とか格子細胞(lattice cells)と呼ばれ、当時は認識されていたアストロサイトとは別ものであり、神経疾患部位に出現する細胞と認識していた。この姿は損傷部位に浸潤している細胞であり、この姿が誤解されて、障害の犯人扱いされることがあった。しかし、脳という閉鎖空間では死んだ細胞を素早く片付けることが必須であり、その意味で、極めて重要な機能である。 | |||
===ミクログリアの出動=== | ===ミクログリアの出動=== | ||
二光子励起顕微鏡によって脳に傷つけることなく深部に存在する細胞の動きを捉えることができるようになり、多くの新しい発見がなされている。その中でもミクログリアのダイナミックな活動の可視化はこの細胞の機能の解明に役立っている。特に興味深いのはミクログリアの突起の正常時の柔らかではあるがダイナミックな動き、そして、損傷部位に対するミクログリアの突起の早い反応とその後の損傷部位への移動の過程である。固定された組織標本では認識できない。ダイナミックな活動が示されている<ref><pubmed>15831717</pubmed></ref>。 | 二光子励起顕微鏡によって脳に傷つけることなく深部に存在する細胞の動きを捉えることができるようになり、多くの新しい発見がなされている。その中でもミクログリアのダイナミックな活動の可視化はこの細胞の機能の解明に役立っている。特に興味深いのはミクログリアの突起の正常時の柔らかではあるがダイナミックな動き、そして、損傷部位に対するミクログリアの突起の早い反応とその後の損傷部位への移動の過程である。固定された組織標本では認識できない。ダイナミックな活動が示されている<ref><pubmed>15831717</pubmed></ref>。 | ||
先にも述べたようにミクログリアの細胞表面にはMHC分子が発現しており、その姿は末梢におけるマクロファージのそれと一致する。静止状態のミクログリアからは想像もできないが、損傷部位に浸潤した活動期のミクログリアの形態はアメーバ状になり、活発に細胞貪食活動を示す(図14)。その姿はマクロファージと区別がつかない。しかし、損傷部位の血管は透過性が高まり、末梢のマクロファージの浸潤を許している可能性が高いので、損傷部位に集まっているアメーバ状の細胞がすべて活性型のミクログリアとは言い切れない。とはいえ、静止型のミクログリアが活性化状態になり細胞貪食性を持つアメーバ状に変化する様は組織学的に正確に捉えられている<ref><pubmed>15895084</pubmed></ref>。 | |||
160行目: | 159行目: | ||
===神経因性疼痛におけるミクログリア=== | ===神経因性疼痛におけるミクログリア=== | ||
ミクログリアが悪玉ではないことは十分に理解できたが、最後に、ミクログリアの関与するやっかいな疾患について述べなければならない。「神経因性疼痛」(neuropathic pain allodynia)である。帯状疱疹の後遺症や手術や怪我の後遺症として、損傷部周辺の触覚が激しい疼痛として感じられる疾患である。その成立メカニズムについては長い間、謎となっていた。しかし、この疼痛のメカニズムにミクログリアが関与していることが明らかになったのだ。 | ミクログリアが悪玉ではないことは十分に理解できたが、最後に、ミクログリアの関与するやっかいな疾患について述べなければならない。「神経因性疼痛」(neuropathic pain allodynia)である。帯状疱疹の後遺症や手術や怪我の後遺症として、損傷部周辺の触覚が激しい疼痛として感じられる疾患である。その成立メカニズムについては長い間、謎となっていた。しかし、この疼痛のメカニズムにミクログリアが関与していることが明らかになったのだ。 | ||
図15aに示すように、痛覚や触覚に関わる知覚神経信号は脊髄後根から脊髄後角に入力し、そこで、二次知覚ニューロンに乗り換える。このシナプス部位には知覚神経からの側抑制(lateral inhibition) | 図15aに示すように、痛覚や触覚に関わる知覚神経信号は脊髄後根から脊髄後角に入力し、そこで、二次知覚ニューロンに乗り換える。このシナプス部位には知覚神経からの側抑制(lateral inhibition)回路が組み込まれており、過剰な入力を和らげている。皮膚に障害が受けた時に痛みは比較的短い時間で和らぐのはこの仕組みによる。この回路にはGABAを伝達物質とする抑制性介在ニューロンが関与している(図15A)。 | ||
この部位で生ずる神経因性疼痛の発症メカニズムは次のような仕組みによることが明らかにされている(図15B)。知覚神経の末梢部に激しい損傷があると、知覚ニューロンの入力部位である脊髄後角周辺に多数のミクログリアが集まる。このミクログリアは上述のようにBDNF(brain derived neurotrophic factor)を遊離する。おそらく、損傷を受けた知覚回路の修復のためと考えられる。しかし、このBDNFが二次知覚神経細胞において細胞内のClイオンとKイオンの量をコントロールするためのClイオン/Kイオン交換ポンプを止めてしまうのだ。結果として、二次知覚ニューロン内のClイオン量が異常に増え、Kイオンが減少した状態が作られる。この状態では痛覚や触覚などの入力を側抑制するために遊離されたGABAによって、Clイオンチャンネルが開口すると、細胞外へのClイオンの流出、すなわち脱分極を生じさせることになる。痛みや高まった触感覚を和らげる仕組みが逆に促進してしまうことになるのだ<ref><pubmed>12917686</pubmed></ref>。。この状態はミクログリアの活動が続く間は回復することはない。従って、ちょっとした痛みや触覚が異常に強く入力されてしまうのである。触覚も過剰になると痛みと感ずるというやっかいな疾患である。原因が解明されたことによって神経因性疼痛の有効な治療法も開発されてきている。 | |||
==関連項目== | ==関連項目== |
回編集