「オリゴデンドロサイト前駆細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:oligodendrocyte precursor cell 英略称:OPC、OLP 独:Vorläuferzellen der Oligodendrozyten 仏:précurseur de oligodendrocyte
英語名:oligodendrocyte precursor cell 英略称:OPC、OLP 独:Vorläuferzellen der Oligodendrozyten 仏:précurseur de oligodendrocyte


 [[中枢神経系]]で[[ミエリン]]を形成する細胞が[[オリゴデンドロサイト]]である。そのオリゴデンドロサイトとなるよう運命づけられた細胞で、なんらオリゴデンドロサイトの形態的・分子的特徴を持たないものをオリゴデンドロサイト前駆細胞と呼ぶ。移動能と増殖活性は高い。
 [[中枢神経系]]で[[ミエリン]]を形成する細胞が[[オリゴデンドロサイト]]である。そのオリゴデンドロサイトとなるよう運命づけられた細胞で、なんらオリゴデンドロサイトの形態的・分子的特徴を持たないものをオリゴデンドロサイト前駆細胞と呼ぶ。移動能と増殖活性は高い。
9行目: 10行目:
=== O-2A前駆細胞 ===
=== O-2A前駆細胞 ===


 ラット胎児視神経を培養すると単クローン抗体A2B5に陽性を示す細胞がみられ、この細胞は培養液に牛胎児血清を培養液に加えるとGFAP+/A2B5+アストロサイトに分化し、無血清培地で培養するとミエリン脂質であるガラクトセレブロシド(GalC)陽性オリゴデンドロサイトに分化する。A2B5抗体は、ガングリオシドやスルファチドなどの糖脂質を抗原とし、当初はニューロン特異的抗体として報告されたが、視神経にはニューロンやその前駆細胞は存在しないことから、A2B5陽性グリア前駆細胞が見いだされた。視神経細胞の培養中にはA2B5-/ GFAP+アストロサイトも存在することから、A2B5に陽性を示すアストログリアをtype2アストロサイト、A2B5陰性のものをtype1アストログリアと命名した。そして、A2B5陽性でGFAPにもGalCにも陽性を示さない段階のものを、O2A前駆細胞と呼んだ<ref name=ref1><pubmed>6304520</pubmed></ref>。培養系では、type2アストロサイトはオリゴデンドロサイトの増殖が終了した後に増殖することが一つの特徴である。しかし、生体内ではこのような増殖パターンを示すアストロサイトはみられないことから、その存在は否定的である<ref name=ref2><pubmed>2328833</pubmed></ref>。
 [[wikipedia:JA:ラット|ラット]]胎児[[視神経]]を培養すると[[wikipedia:JA:モノクローナル抗体|モノクローナル抗体]]A2B5に陽性を示す細胞がみられ、この細胞は培養液に[[wikipedia:JA:牛胎児血清|牛胎児血清]]を[[wikipedia:JA:培養液|培養液]]に加えるとGFAP+/A2B5+[[アストロサイト]]に分化し、[[wikipedia:JA:無血清培地|無血清培地]]で培養すると[[ミエリン]]脂質である[[ガラクトセレブロシド]](GalC)陽性オリゴデンドロサイトに分化する。A2B5抗体は、[[wikipedia:JA:ガングリオシド|ガングリオシド]]や[[wikipedia:JA:スルファチド|スルファチド]]などの糖脂質を抗原とし、当初はニューロン特異的抗体として報告されたが、視神経にはニューロンやその前駆細胞は存在しないことから、A2B5陽性[[グリア前駆細胞]]が見いだされた。視神経細胞の培養中にはA2B5-/ GFAP+アストロサイトも存在することから、A2B5に陽性を示すアストログリアをtype 2アストロサイト、A2B5陰性のものをtype 1アストログリアと命名した。そして、A2B5陽性でGFAPにもGalCにも陽性を示さない段階のものを、O2A前駆細胞と呼んだ<ref name=ref1><pubmed>6304520</pubmed></ref>。培養系では、type 2アストロサイトはオリゴデンドロサイトの増殖が終了した後に増殖することが一つの特徴である。しかし、生体内ではこのような増殖パターンを示すアストロサイトはみられないことから、その存在は否定的である<ref name=ref2><pubmed>2328833</pubmed></ref>。


=== O-2A前駆細胞の単離方法 ===  
=== O-2A前駆細胞の単離方法 ===  


 O2A前駆細胞は、新生児ラットの視神経や大脳皮質をフラスコで2週間程度培養し、その後フラスコを激しく水平方面に激しく1晩shake(200rpm以上)することにより浮遊してくる。Type1アストロサイトやニューロンは、この条件では浮遊しない。この浮遊細胞を集め、ミクログリアを何もコートしていないプラスチックペトリ皿に付着させることで除いて継代培養すると、O-2A細胞が80~90%程度含まれるenriched cultureとなる。A2B5抗体を培養基質に塗布して、これに接着する細胞を集めることにより95%以上の純度でO-2A細胞を集めることができる<ref name=ref3>'''Bottenstein JE and Hunter SF''' <br>''Culture method for oligodendrocyte cell line and oligodendrocyte-type2 astrocyte lineage cells.''<br>In Cell culture, Conn PM ed, pp. 56-75, Methods in Neurosciences Vol. 2, Academic Press Inc., San Diego.(1990)</ref><ref name=ref4><pubmed>12379434</pubmed></ref>。培養条件により、アストログリア、またはオリゴデンドロサイトに分化させるようコントロールできることから、細胞分化調節機構解析のモデル細胞として扱われてきた。しかし、マウス胎仔および新生仔の脳の培養細胞では、同じような手順で行ってもO-2A細胞のenriched cultureは難しい。 
 O2A前駆細胞は、新生児ラットの視神経や[[大脳皮質]]をフラスコで2週間程度培養し、その後フラスコを激しく水平方面に激しく1晩shake(200rpm以上)することにより浮遊してくる。Type 1アストロサイトやニューロンは、この条件では浮遊しない。この浮遊細胞を集め、ミクログリアを何もコートしていないプラスチックペトリ皿に付着させることで除いて[[継代培養]]すると、O-2A細胞が80~90%程度含まれるenriched cultureとなる。A2B5抗体を培養基質に塗布して、これに接着する細胞を集めることにより95%以上の純度でO-2A細胞を集めることができる<ref name=ref3>'''Bottenstein JE and Hunter SF''' <br>''Culture method for oligodendrocyte cell line and oligodendrocyte-type2 astrocyte lineage cells.''<br>In Cell culture, Conn PM ed, pp. 56-75, Methods in Neurosciences Vol. 2, Academic Press Inc., San Diego.(1990)</ref><ref name=ref4><pubmed>12379434</pubmed></ref>。培養条件により、アストログリア、またはオリゴデンドロサイトに分化させるようコントロールできることから、細胞分化調節機構解析のモデル細胞として扱われてきた。しかし、[[wikipedia:JA:マウス|マウス]]胎仔および新生仔の脳の培養細胞では、同じような手順で行ってもO-2A細胞のenriched cultureは難しい。 


=== OPCとしてのO-2A前駆細胞 ===  
=== OPCとしてのO-2A前駆細胞 ===  
21行目: 22行目:
===細胞系譜とPDGFα受容体(PDGFRα) ===  
===細胞系譜とPDGFα受容体(PDGFRα) ===  


 培養下でのO-2A細胞は、type1-astrocyteの培養上清により増殖が高まることが示され、この中に含まれるO-2A細胞に対する増殖因子が血小板由来成長因子(platelet derived growth factor; PDGF)であることが明らかにされた<ref name=ref6><pubmed>2834067</pubmed></ref>。そして、O-2A前駆細胞がその受容体としてαサブユニット(PDGFRα)を発現していることも明らかにされた<ref name=ref7><pubmed>2558873</pubmed></ref>。これをもとに、発生段階の神経組織内でPDGFRαを発現している細胞の探索が行われた。その結果、脊髄では、ラットでは胎齢14.5日目(E14.5)、マウスではE12.5日目、ニワトリ胚ではHHstage32(孵卵7日目)の脳室層腹側部に限局して、PDGFRα陽性細胞が出現することから、これが脊髄のオリゴデンドロサイト前駆細胞の起源であると考えられるようになった<ref name=ref8><pubmed>8330523</pubmed></ref>。その後、PDGFRα陽性細胞を単離して培養を行ったり<ref name=ref9><pubmed>9012528</pubmed></ref>、PDGF欠損マウスや過剰発現させたトランスジェニックマウスでのOPCの発生を解析したりすること<ref name=ref10><pubmed>9620692</pubmed></ref><ref name=ref11><pubmed>9876175</pubmed></ref>により、PDGFRα陽性細胞がOPCであることが明らかにされた。このような早い時期の脳室層で、特定の細胞サブセットを特異的に標識することができた最初の例であり、その後の神経管の背腹軸ドメイン形成の顕幽へと発展していくことになる<ref name=ref12><pubmed>10625331</pubmed></ref>。さらにPDGFRαを指標として、同じような発現パターンを示す分子が報告されそれらの多くがOPCのマーカーであることが明らかにされた。
 培養下でのO-2A細胞は、type 1-アストロサイトの培養上清により増殖が高まることが示され、この中に含まれるO-2A細胞に対する増殖因子が血[[小板由来成長因子]](platelet derived growth factor; PDGF)であることが明らかにされた<ref name=ref6><pubmed>2834067</pubmed></ref>。そして、O-2A前駆細胞がその受容体としてαサブユニット(PDGFRα)を発現していることも明らかにされた<ref name=ref7><pubmed>2558873</pubmed></ref>。これをもとに、発生段階の神経組織内でPDGFRαを発現している細胞の探索が行われた。その結果、脊髄では、ラットでは胎齢14.5日目(E14.5)、マウスではE12.5日目、ニワトリ胚ではHHstage32(孵卵7日目)の[[脳室層]]腹側部に限局して、PDGFRα陽性細胞が出現することから、これが脊髄のオリゴデンドロサイト前駆細胞の起源であると考えられるようになった<ref name=ref8><pubmed>8330523</pubmed></ref>。その後、PDGFRα陽性細胞を単離して培養を行ったり<ref name=ref9><pubmed>9012528</pubmed></ref>、PDGF欠損マウスや過剰発現させた[[wikipedia:JA:トランスジェニックマウス|トランスジェニックマウス]]でのOPCの発生を解析したりすること<ref name=ref10><pubmed>9620692</pubmed></ref><ref name=ref11><pubmed>9876175</pubmed></ref>により、PDGFRα陽性細胞がOPCであることが明らかにされた。このような早い時期の脳室層で、特定の細胞サブセットを特異的に標識することができた最初の例であり、その後の[[神経管]]の背腹軸ドメイン形成の顕幽へと発展していくことになる<ref name=ref12><pubmed>10625331</pubmed></ref>。さらにPDGFRαを指標として、同じような発現パターンを示す分子が報告されそれらの多くがOPCのマーカーであることが明らかにされた。


=== 細胞系譜マーカーと系譜解析 ===  
=== 細胞系譜マーカーと系譜解析 ===  
29行目: 30行目:
==== 転写因子 ====  
==== 転写因子 ====  


 転写因子のOlig2は、Olig1とともに、Shhに誘導されるオリゴデンドロサイト系譜に特異的な転写因子として報告された<ref name=ref13><pubmed>10719888</pubmed></ref><ref name=ref14><pubmed>11091082</pubmed></ref><ref name=ref15><pubmed>10719889</pubmed></ref>。Olig2とOlig1はともにPDGFRαと同様に、脊髄腹側部から出現し次第に脊髄背側部に広がるが、発現そのものはOPCの出現以前からみられる。Nkx2.2は、マウスではOlig2より腹側部で発現し、ニワトリ胚ではOlig2と一部重なり、O4陽性細胞で発現がみられる<ref name=ref16><pubmed>11526078</pubmed></ref>。またマウスでも発生の後期になるとOlig2とNkx2.2は同一の細胞で発現するようになる。Nkx2.2はミエリンプロテオリピドタンパク(PLP)のプロモーターに結合してその発現を調節する。Sox10はOlig2と同様の領域から発現が始まるが、Olig2よりも遅くに脊髄脳室層腹側部から発現が始まり、Olig2よりOPCの系譜に特異的であると考えられている<ref name=ref17><pubmed>11799060</pubmed></ref>。
 [[転写因子]]の[[Olig2]]は、[[Olig1]]とともに、[[ソニックヘッジホッグ]](Shh)に誘導されるオリゴデンドロサイト系譜に特異的な転写因子として報告された<ref name=ref13><pubmed>10719888</pubmed></ref><ref name=ref14><pubmed>11091082</pubmed></ref><ref name=ref15><pubmed>10719889</pubmed></ref>。Olig2とOlig1はともにPDGFRαと同様に、[[脊髄]]腹側部から出現し次第に脊髄背側部に広がるが、発現そのものはOPCの出現以前からみられる。
 
 [[Nkx2.2]]は、マウスではOlig2より腹側部で発現し、ニワトリ胚ではOlig2と一部重なり、O4陽性細胞で発現がみられる<ref name=ref16><pubmed>11526078</pubmed></ref>。またマウスでも発生の後期になるとOlig2とNkx2.2は同一の細胞で発現するようになる。Nkx2.2は[[ミエリンプロテオリピドタンパク]](PLP)のプロモーターに結合してその発現を調節する。
 
 [[Sox10]]はOlig2と同様の領域から発現が始まるが、Olig2よりも遅くに脊髄脳室層腹側部から発現が始まり、Olig2よりOPCの系譜に特異的であると考えられている<ref name=ref17><pubmed>11799060</pubmed></ref>。


==== 細胞表面分子 ====  
==== 細胞表面分子 ====  


 PDGFRαは上述の通り、最初にOPCの系譜マーカーとして見出されたものである。NG2は、コンドロイチン硫酸プロテオグリカン(cspg4)を抗原とする抗体を用いて標識される細胞である。NG2抗体は、培養系ではO-2A前駆細胞を標識し、生体内でもPDGFRα陽性細胞を標識することから、OPCで発現していることが明らかにされた<ref name=ref18><pubmed>8714519</pubmed></ref><ref name=ref19><pubmed>3305800</pubmed></ref>。
 PDGFRαは上述の通り、最初にOPCの系譜マーカーとして見出されたものである。NG2は、[[コンドロイチン硫酸プロテオグリカン]](cspg4)を抗原とする抗体を用いて標識される細胞である。NG2抗体は、培養系ではO-2A前駆細胞を標識し、生体内でもPDGFRα陽性細胞を標識することから、OPCで発現していることが明らかにされた<ref name=ref18><pubmed>8714519</pubmed></ref><ref name=ref19><pubmed>3305800</pubmed></ref>。


==== 糖脂質 ====  
==== 糖脂質 ====  


 牛の脳梁を抗原として作製された単クローン抗体O4とO1は、しばしばオリゴデンドロサイト系譜細胞の解析に用いられている。このうちO1は、ガラクトセレブロシド(galactocerebroside; GalC)とmonogalactosyldiglycerideを認識し、分化したオリゴデンドロサイトのマーカーとして用いられている<ref name=ref20><pubmed>6786942</pubmed></ref>。O4はsulfatide、 seminolipid、cholesterolが抗原として同定されており、これらは比較的分化の進んだオリゴデンドロサイトで発現している。一方。O4はOPCもしくはこれよりやや分化の進んだproligodendroblastも認識するが、OPCで発現しているO4に認識される脂質は同定されていない<ref name=ref21><pubmed>1573402</pubmed></ref>。
 牛の[[脳梁]]を抗原として作製されたモノクローナル抗体O4とO1は、しばしばオリゴデンドロサイト系譜細胞の解析に用いられている。このうちO1は、ガラクトセレブロシド(galactocerebroside; GalC)と[[モノガラクトシルジグリセリド]]を認識し、分化したオリゴデンドロサイトのマーカーとして用いられている<ref name=ref20><pubmed>6786942</pubmed></ref>。O4は[[wikipedia:JA:スルファチド|スルファチド]]、[[セミノリピド]]、[[コレステロール]]が抗原として同定されており、これらは比較的分化の進んだオリゴデンドロサイトで発現している。一方。O4はOPCもしくはこれよりやや分化の進んだpro-oligodendroblastも認識するが、OPCで発現しているO4に認識される脂質は同定されていない<ref name=ref21><pubmed>1573402</pubmed></ref>。


 最近では、これらのマーカー分子を用いたgenetic fate mappingにより、それぞれの細胞系譜が詳細に明らかにされるようになってきた。すなわち、系譜マーカーを発現する細胞にCreリコンビナーゼを発現させたマウスを作製し、これをレポーターマウスと交配することにより、生体内で細胞系譜を追跡できるようになった。Sox10-Creマウス、PDGFRα-Creマウス、Olig2-CreER マウス、NG2-CreERT2マウスなどが主に使われている。
 最近では、これらのマーカー分子を用いたgenetic fate mappingにより、それぞれの細胞系譜が詳細に明らかにされるようになってきた。すなわち、系譜マーカーを発現する細胞に[[Creリコンビナーゼ]]を発現させたマウスを作製し、これをレポーターマウスと交配することにより、生体内で細胞系譜を追跡できるようになった。Sox10-Creマウス、PDGFRα-Creマウス、Olig2-CreER マウス、NG2-CreERT2マウスなどが主に使われている。




46行目: 51行目:
=== 未分化な神経上皮細胞からOPCへの分化とShh, FGF2 ===  
=== 未分化な神経上皮細胞からOPCへの分化とShh, FGF2 ===  


 OPCは脊髄では、培養実験<ref name=ref22><pubmed>1869925</pubmed></ref>。[22]やPDGFRαや単クローン抗体O4をマーカーとした形態学的な解析<ref name=ref23><pubmed>7600990</pubmed></ref><ref name=ref8><pubmed>8330523</pubmed></ref>。から、その腹側部に由来することが示されていた。ソニックヘッジホッグ(Shh)が脊索や底板で発現するMorphogenとして見出され、これが運動ニューロンの分化誘導因子であることが明らかにされた。これらの成果をもとに、ニワトリ胚の神経管背側部近傍への脊索移植実験が行われ、運動ニューロンと同じようにOPCも異所性の脊索により誘導されることが示され、さらに培養実験を用いて、OPCもShhにより誘導されることが明らかにされた<ref name=ref24><pubmed>8660875</pubmed></ref><ref name=ref25><pubmed>10226001</pubmed></ref><ref name=ref26><pubmed>7473887</pubmed></ref>。
 OPCは脊髄では、培養実験<ref name=ref22><pubmed>1869925</pubmed></ref>。[22]やPDGFRαやモノクローナル抗体O4をマーカーとした形態学的な解析<ref name=ref23><pubmed>7600990</pubmed></ref><ref name=ref8><pubmed>8330523</pubmed></ref>。から、その腹側部に由来することが示されていた。Shhが[[脊索]]や[[底板]]で発現するmorphogenとして見出され、これが[[運動ニューロン]]の[[分化誘導因子]]であることが明らかにされた。これらの成果をもとに、ニワトリ胚の神経管背側部近傍への脊索移植実験が行われ、運動ニューロンと同じようにOPCも異所性の脊索により誘導されることが示され、さらに培養実験を用いて、OPCもShhにより誘導されることが明らかにされた<ref name=ref24><pubmed>8660875</pubmed></ref><ref name=ref25><pubmed>10226001</pubmed></ref><ref name=ref26><pubmed>7473887</pubmed></ref>。


 脊髄腹側部でOPCの分化誘導が起きている時期には、脊髄背側部からはOPC分化抑制因子が発現しており、これがWntとBMP4であることが実験的に示されている。これらの発現が終了する脊髄の発生後期になると、脊髄背側部からのOPCが出現することが、Shh欠損マウスやNkx6欠損マウスを用いて示された。これらは、Shh非依存性でFGF2依存的に誘導される<ref name=ref27><pubmed>14660548</pubmed></ref>。
 脊髄腹側部でOPCの分化誘導が起きている時期には、脊髄背側部からはOPC分化抑制因子が発現しており、これが[[Wnt]]と[[BMP4]]であることが実験的に示されている。これらの発現が終了する脊髄の発生後期になると、脊髄背側部からのOPCが出現することが、Shh欠損マウスやNkx6欠損マウスを用いて示された。これらは、Shh非依存性で[[FGF2]]依存的に誘導される<ref name=ref27><pubmed>14660548</pubmed></ref>。


===移動と軸索ガイダンス分子 ===  
===移動と軸索ガイダンス分子 ===  


 OPCが移動することは、ミエリン欠損マウスへの胎仔脳組織の移植で最初に示された。ミエリン欠損マウスに胎児脳組織を大脳皮質に移植すると、脳内の脳幹を含む広い領域でミエリン形成がみられるようになることから、移植組織に由来する細胞が活発に移動することが明らかにされた<ref name=ref28><pubmed>6085571</pubmed></ref>。また、視神経のOPCが前脳から移動してきた「移民細胞(immigrant cells)」であることは、培養実験で最初に示唆されていた<ref name=ref29><pubmed>3600791</pubmed></ref>。さらに、ニワトリ胚の第3脳室に蛍光色素DiIを注入して脳室層細胞を標識すると、これを取り込んだ細胞が視神経に出現しO4に陽性を示すことから、生体内でも「移民細胞」であることが明らかとなった<ref name=ref30><pubmed>9292719</pubmed></ref>。最近になって、レトロウイルスベクターを用いたクローン解析でも、ニワトリ胚では前脳に由来する細胞が視神経に入ることが示されている<ref name=ref31><pubmed>20371817</pubmed></ref>。また、PLP-GFPトランスジェニックマウス、ゼブラフィッシュを用いて、脊髄でのOPCの移動がリアルタイムで可視化されている<ref name=ref32><pubmed>17099706</pubmed></ref><ref name=ref33><pubmed>11826117</pubmed></ref>。
 OPCが移動することは、ミエリン欠損マウスへの胎仔脳組織の移植で最初に示された。ミエリン欠損マウスに胎児脳組織を大脳皮質に移植すると、脳内の[[脳幹]]を含む広い領域でミエリン形成がみられるようになることから、移植組織に由来する細胞が活発に移動することが明らかにされた<ref name=ref28><pubmed>6085571</pubmed></ref>。また、視神経のOPCが前脳から移動してきた「移民細胞(immigrant cells)」であることは、培養実験で最初に示唆されていた<ref name=ref29><pubmed>3600791</pubmed></ref>。さらに、[[wikipedia:JA:ニワトリ|ニワトリ]]胚の第3脳室に[[wikipedia:JA:蛍光|蛍光]]色素[[DiI]]を注入して脳室層細胞を標識すると、これを取り込んだ細胞が視神経に出現しO4に陽性を示すことから、生体内でも「移民細胞」であることが明らかとなった<ref name=ref30><pubmed>9292719</pubmed></ref>。最近になって、[[wikipedia:JA:レトロウイルス|レトロウイルス]]ベクターを用いたクローン解析でも、ニワトリ胚では前脳に由来する細胞が視神経に入ることが示されている<ref name=ref31><pubmed>20371817</pubmed></ref>。また、PLP-GFPトランスジェニックマウス、[[wikipedia:JA:ゼブラフィッシュ|ゼブラフィッシュ]]を用いて、脊髄でのOPCの移動がリアルタイムで可視化されている<ref name=ref32><pubmed>17099706</pubmed></ref><ref name=ref33><pubmed>11826117</pubmed></ref>。


 OPCの移動は、軸索ガイダンス分子によって制御されている。これは、視神経の組織片培養でOPCがNetrin-1やSema3Aに反発するように移動し、またOPCのサブセットにそれぞれの受容体であるunc5aやneuropilin-1の発現がみられることから明らかにされた<ref name=ref34><pubmed>11546748</pubmed></ref>。これをもとに、netrin-1を欠損させたPLP-GFPトランスジェニックマウスを解析しin vivoでもnetrin-1によるOPCの移動制御が明らかにされた<ref name=ref35><pubmed>12668624</pubmed></ref>。
 OPCの移動は、[[軸索ガイダンス]]分子によって制御されている。これは、視神経の組織片培養でOPCが[[Netrin-1]]や[[Sema3A]]に反発するように移動し、またOPCのサブセットにそれぞれの受容体である[[unc5a]]や[[neuropilin-1]]の発現がみられることから明らかにされた<ref name=ref34><pubmed>11546748</pubmed></ref>。これをもとに、netrin-1を欠損させたPLP-GFPトランスジェニックマウスを解析しin vivoでもnetrin-1によるOPCの移動制御が明らかにされた<ref name=ref35><pubmed>12668624</pubmed></ref>。


===増殖 ===  
===増殖 ===  
60行目: 65行目:
 PDGF-Aは、培養系のみならずin vivoでもOPCに対して強力な増殖因子として働く。これを欠損するマウスではOPCの数が非常に少なくなり、成熟したオリゴデンドロサイトわずかしか見られない<ref name=ref11><pubmed>9876175</pubmed></ref>。逆に、PDGF-Aを過剰発現させたマウスでは、胎生期のOPCの数が5倍になる。しかし、新生児期に過剰なOPCはアポトーシスにより脱落し、野生型と同程度のオリゴデンドロサイトがみられるようになる<ref name=ref10><pubmed>9620692</pubmed></ref>。
 PDGF-Aは、培養系のみならずin vivoでもOPCに対して強力な増殖因子として働く。これを欠損するマウスではOPCの数が非常に少なくなり、成熟したオリゴデンドロサイトわずかしか見られない<ref name=ref11><pubmed>9876175</pubmed></ref>。逆に、PDGF-Aを過剰発現させたマウスでは、胎生期のOPCの数が5倍になる。しかし、新生児期に過剰なOPCはアポトーシスにより脱落し、野生型と同程度のオリゴデンドロサイトがみられるようになる<ref name=ref10><pubmed>9620692</pubmed></ref>。


 一方、OPCの増殖を停止させる細胞内因子としてp27/Kip1が報告されている。p27/Kip1を欠損するマウスから単離されたOPCはオリゴデンドロサイトに分化するものの、増殖が持続する。レトロウイルスベクターを用いてOPCにp27/Kip1を過剰発現させるとG1期とS期の間で細胞周期がとどまり、オリゴデンドロサイトに分化できなくなることが報告されている<ref name=ref36><pubmed>9029151</pubmed></ref><ref name=ref37><pubmed>9733077</pubmed></ref>。
 一方、OPCの増殖を停止させる細胞内因子として[[p27]]/Kip1が報告されている。p27/Kip1を欠損するマウスから単離されたOPCはオリゴデンドロサイトに分化するものの、増殖が持続する。レトロウイルスベクターを用いてOPCにp27/Kip1を過剰発現させると[[G1期]]と[[S期]]の間で細胞周期がとどまり、オリゴデンドロサイトに分化できなくなることが報告されている<ref name=ref36><pubmed>9029151</pubmed></ref><ref name=ref37><pubmed>9733077</pubmed></ref>。


===オリゴデンドロサイトへの分化とその調節機構 ===  
===オリゴデンドロサイトへの分化とその調節機構 ===  


 オリゴデンドロサイトの最終分化やミエリン形成は一般的に、神経回路形成が終わった後に始まる。この発生の最終段階には、神経活動が大きな影響を与えている。後根神経節のニューロンをモデルとした実験では、ニューロンの活動により軸索からATPが分泌され、これがアストロサイトに作用する。ATPで刺激を受けたアストロサイトからLIF(leukemia inhibitory factor)が分泌され、これがOPCを刺激して成熟オリゴデンドロサイトとなりミエリン形成が始まる<ref name=ref38><pubmed>16543131</pubmed></ref>。また、軸索からはその活動依存的にグルタミン酸も放出される。オリゴデンドロサイトの細胞膜の局所に作用し、Fyn依存性にMBPの翻訳を上昇させ、ミエリン形成を促進する<ref name=ref39><pubmed>21817014</pubmed></ref>。
 オリゴデンドロサイトの最終分化やミエリン形成は一般的に、神経回路形成が終わった後に始まる。この発生の最終段階には、神経活動が大きな影響を与えている。[[後根神経節]]のニューロンをモデルとした実験では、ニューロンの活動により軸索から[[wikipedia:JA:ATP|ATP]]が分泌され、これがアストロサイトに作用する。ATPで刺激を受けたアストロサイトから[[leukemia inhibitory factor]](LIF)が分泌され、これがOPCを刺激して成熟オリゴデンドロサイトとなりミエリン形成が始まる<ref name=ref38><pubmed>16543131</pubmed></ref>。また、軸索からはその活動依存的に[[グルタミン酸]]も放出される。オリゴデンドロサイトの[[wikipedia:JA:細胞膜|細胞膜]]の局所に作用し、[[Fyn]]依存性に[[MBP]]の[[wikipedia:JA:翻訳|翻訳]]を上昇させ、ミエリン形成を促進する<ref name=ref39><pubmed>21817014</pubmed></ref>。


 細胞内因子として注目されている分子としてMAPキナーゼの一つであるERK(extracellular-signal regulated kinase)がある。脊髄背側部のOPCはFGFにより分化することから<ref name=ref27><pubmed>14660548</pubmed></ref>、受容体型チロシンキナーゼの下流分子として注目されている面もある。このうちERK2を神経幹細胞特異的に欠損させると、OPCの増殖や生存には影響がない一方でGalC陽性オリゴデンドロサイトの出現が遅れることから、オリゴデンドロサイトの最終分化のタイミングを調節していると考えられている<ref name=ref40><pubmed>21248107</pubmed></ref>。
 細胞内因子として注目されている分子として[[MAPキナーゼ]]の一つである[[extracellular-signal regulated kinase]](ERK)がある。脊髄背側部のOPCはFGFにより分化することから<ref name=ref27><pubmed>14660548</pubmed></ref>、[[受容体型チロシンキナーゼ]]の下流分子として注目されている面もある。このうちERK2を神経幹細胞特異的に欠損させると、OPCの増殖や生存には影響がない一方でGalC陽性オリゴデンドロサイトの出現が遅れることから、オリゴデンドロサイトの最終分化のタイミングを調節していると考えられている<ref name=ref40><pubmed>21248107</pubmed></ref>。


== 脳の各領域におけるOPCの出現様式 ==
== 脳の各領域におけるOPCの出現様式 ==
78行目: 83行目:
=== 小脳を含む後脳 ===  
=== 小脳を含む後脳 ===  


 小脳のオリゴデンドロサイトは、小脳の脳室層<ref name=ref46><pubmed>11336511</pubmed></ref>、後脳腹側部<ref name=ref47><pubmed>11756750</pubmed></ref>に由来するものと、脳の領域境界を越えて中脳から小脳に入ってくるもの<ref name=ref48><pubmed>21901755</pubmed></ref>とが報告されている。これらはいずれもニワトリ胚を用いた実験で示されている。
 [[小脳]]のオリゴデンドロサイトは、小脳の脳室層<ref name=ref46><pubmed>11336511</pubmed></ref>、[[後脳]]腹側部<ref name=ref47><pubmed>11756750</pubmed></ref>に由来するものと、脳の領域境界を越えて[[中脳]]から小脳に入ってくるもの<ref name=ref48><pubmed>21901755</pubmed></ref>とが報告されている。これらはいずれもニワトリ胚を用いた実験で示されている。


=== 視神経 ===  
=== 視神経 ===  
86行目: 91行目:
=== 終脳 ===  
=== 終脳 ===  


 終脳のオリゴデンドロサイトは、ニワトリ-ウズラキメラの解析から、anterior entopeduncular area (AEP)に由来することが示唆されていた<ref name=ref50><pubmed>11311157</pubmed></ref>。一方、Cre/loxPシステムを用いたマウスの解析では、胎生期ではAEPを含むNkx2.1発現領域(内側線条体原基、medial ganglionic eminence)、次いでGsh2陽性領域(ganglionic eminence; GE)からOPCが生み出され、これが正接方向に移動して大脳皮質に入る。一方で、新生児期になると大脳皮質からもオリゴデンドロサイト前駆細胞が生み出され、腹側部から移動していたものと置き換わり<ref name=ref51><pubmed>16388308</pubmed></ref>、大脳皮質の灰白質のオリゴでンドロサイトに分化する。GEに由来するオリゴデンドロサイトは、終脳腹側部と脳梁に残る<ref name=ref41><pubmed>21543611</pubmed></ref>。
 終脳のオリゴデンドロサイトは、ニワトリ-[[wikipedia:JA:ウズラ|ウズラ]][[wikipedia:JA:キメラ|キメラ]]の解析から、[[anterior entopeduncular area]] (AEP)に由来することが示唆されていた<ref name=ref50><pubmed>11311157</pubmed></ref>。一方、Cre/loxPシステムを用いたマウスの解析では、胎生期ではAEPを含むNkx2.1発現領域([[内側線条体原基]]、medial ganglionic eminence)、次いでGsh2陽性領域(ganglionic eminence; GE)からOPCが生み出され、これが正接方向に移動して大脳皮質に入る。一方で、新生児期になると大脳皮質からもオリゴデンドロサイト前駆細胞が生み出され、腹側部から移動していたものと置き換わり<ref name=ref51><pubmed>16388308</pubmed></ref>、大脳皮質の灰白質のオリゴでンドロサイトに分化する。GEに由来するオリゴデンドロサイトは、終脳腹側部と脳梁に残る<ref name=ref41><pubmed>21543611</pubmed></ref>。


=== 成体脳におけるオリゴデンドロサイト前駆細胞 ===  
=== 成体脳におけるオリゴデンドロサイト前駆細胞 ===  
92行目: 97行目:
 上述のPDGFRαやNG2を発現する細胞は成体脳でもみられ、グリア細胞の数%をしめている<ref name=ref52><pubmed>10964946</pubmed></ref>。NG2細胞は、多くの突起を伸ばして複雑な形態をしている。しかし、GFAPなどのアストログリアのマーカーを発現しておらず、また成熟したオリゴデンドロサイトが発現するミエリンタンパクやミエリン脂質も発現していない。このようなことからNG2細胞は、第四のグリア細胞と見なされるようになってきた。成体脳でのOPCは胎生期のそれらと同じ細胞系譜にあり、前駆細胞としてそのまま維持されている物と考えられる<ref name=ref53><pubmed>18582453</pubmed></ref>。
 上述のPDGFRαやNG2を発現する細胞は成体脳でもみられ、グリア細胞の数%をしめている<ref name=ref52><pubmed>10964946</pubmed></ref>。NG2細胞は、多くの突起を伸ばして複雑な形態をしている。しかし、GFAPなどのアストログリアのマーカーを発現しておらず、また成熟したオリゴデンドロサイトが発現するミエリンタンパクやミエリン脂質も発現していない。このようなことからNG2細胞は、第四のグリア細胞と見なされるようになってきた。成体脳でのOPCは胎生期のそれらと同じ細胞系譜にあり、前駆細胞としてそのまま維持されている物と考えられる<ref name=ref53><pubmed>18582453</pubmed></ref>。


 BACを用いたトランスジェニックマウスやタモキシフェン誘導型Cre/loxPを用いた系譜解析から、新生児期以降のNG2陽性細胞はオリゴデンドロサイトに分化することが明らかにされ、NG2細胞が成体脳でのOPCであることが明らかにされた<ref name=ref54><pubmed>18045844</pubmed></ref><ref name=ref55><pubmed>21266410</pubmed></ref>。NG2細胞は、脳のほとんどすべての領域でニューロンの軸索終末によりシナプが一過性に形成されており、またグルタミン酸やGABAに対する受容体も発現してその働きにより膜電位が変化する。このシナプスは、オリゴデンドロサイトへの分化とともに消失する。OPCの分化はグルタミン酸により抑制されることが報告されており、NG2細胞へのシナプスは前駆細胞プールの維持に働いていると考えられている<ref name=ref56><pubmed>21395579</pubmed></ref>。
 [[wikipedia:JA:バクテリア人口染色体|バクテリア人口染色体]](bacterial artificial chromosome, BAC)を用いたトランスジェニックマウスや[[タモキシフェン]]誘導型Cre/loxPを用いた系譜解析から、新生児期以降のNG2陽性細胞はオリゴデンドロサイトに分化することが明らかにされ、NG2細胞が成体脳でのOPCであることが明らかにされた<ref name=ref54><pubmed>18045844</pubmed></ref><ref name=ref55><pubmed>21266410</pubmed></ref>。NG2細胞は、脳のほとんどすべての領域でニューロンの[[軸索終末]]により[[シナプス]]が一過性に形成されており、またグルタミン酸や[[GABA]]に対する受容体も発現してその働きにより[[膜電位]]が変化する。このシナプスは、オリゴデンドロサイトへの分化とともに消失する。OPCの分化はグルタミン酸により抑制されることが報告されており、NG2細胞へのシナプスは前駆細胞プールの維持に働いていると考えられている<ref name=ref56><pubmed>21395579</pubmed></ref>。
== 参考文献 ==
== 参考文献 ==

案内メニュー