127
回編集
細編集の要約なし |
細編集の要約なし |
||
13行目: | 13行目: | ||
神経堤は[[脊髄]][[後根神経節]]の由来を調べる研究の中で発見された。19世紀後半において脊髄[[神経節]]は[[体節]]に由来すると考えられていたが、1868年にHisは[[ニワトリ]]胚の表皮外胚葉と[[神経上皮]]に介在する細胞群を神経節原基として同定し、間索(Zwischenstrang)と呼んだ。これは神経堤が文献的に記載された最初の報告である<ref name="ref2">'''W His'''<br>Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei.<br>''Leipzig, Germany: F.C.W. Vogel.'':1868</ref>。その後1940年代まで、神経堤はメラニン細胞や脊髄神経節の供給源として、主に[[wikipedia:ja:両生類|両生類]][[wikipedia:ja:胚|胚]]を用いて研究が行われた。 | 神経堤は[[脊髄]][[後根神経節]]の由来を調べる研究の中で発見された。19世紀後半において脊髄[[神経節]]は[[体節]]に由来すると考えられていたが、1868年にHisは[[ニワトリ]]胚の表皮外胚葉と[[神経上皮]]に介在する細胞群を神経節原基として同定し、間索(Zwischenstrang)と呼んだ。これは神経堤が文献的に記載された最初の報告である<ref name="ref2">'''W His'''<br>Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei.<br>''Leipzig, Germany: F.C.W. Vogel.'':1868</ref>。その後1940年代まで、神経堤はメラニン細胞や脊髄神経節の供給源として、主に[[wikipedia:ja:両生類|両生類]][[wikipedia:ja:胚|胚]]を用いて研究が行われた。 | ||
1960年代に入り、[[wikipedia:ja:鳥類|鳥類]]胚を用いて神経堤細胞の移動能を調べる実験が行われるようになった<ref name="ref3">'''B K Hall, S Hörstadius'''<br>The neural crest.<br>''London, UK: Oxford University Press.'':1988</ref>。そして1969年に、フランスのLe Douarinらのグループがニワトリ・[[wikipedia:ja:ウズラ|ウズラ]]の[[wikipedia:ja:キメラ|キメラ]]胚を作成し、神経堤細胞を本格的に標識可能にしたことで神経堤研究が大きく前進した<ref name="ref1" />。彼女らは、ニワトリに比較してウズラの細胞の[[wikipedia:ja:ヘテロクロマチン|ヘテロクロマチン]]の凝集が著明であることに着目し、神経外胚葉全体を除去したニワトリ胚にウズラ胚から摘出した神経外胚葉全体を移植し、ニワトリ体内の様々な部位に移動したウズラ由来細胞(つまり神経堤細胞)の挙動を観察した。この研究によって、神経堤細胞が脊髄後根神経節、[[交感神経節]]、[[腸管神経節]] | 1960年代に入り、[[wikipedia:ja:鳥類|鳥類]]胚を用いて神経堤細胞の移動能を調べる実験が行われるようになった<ref name="ref3">'''B K Hall, S Hörstadius'''<br>The neural crest.<br>''London, UK: Oxford University Press.'':1988</ref>。そして1969年に、フランスのLe Douarinらのグループがニワトリ・[[wikipedia:ja:ウズラ|ウズラ]]の[[wikipedia:ja:キメラ|キメラ]]胚を作成し、神経堤細胞を本格的に標識可能にしたことで神経堤研究が大きく前進した<ref name="ref1" />。彼女らは、ニワトリに比較してウズラの細胞の[[wikipedia:ja:ヘテロクロマチン|ヘテロクロマチン]]の凝集が著明であることに着目し、神経外胚葉全体を除去したニワトリ胚にウズラ胚から摘出した神経外胚葉全体を移植し、ニワトリ体内の様々な部位に移動したウズラ由来細胞(つまり神経堤細胞)の挙動を観察した。この研究によって、神経堤細胞が脊髄後根神経節、[[交感神経節]]、[[腸管神経節]]などの末梢神経細胞やシュワン細胞、心臓の平滑筋細胞、副腎や[[wikipedia:ja:甲状腺|甲状腺]]の内分泌細胞、メラニン細胞、頭部の骨軟部組織などの多種多様な組織を作り出していることが明らかになった。その後、[[wikipedia:DiI|DiI]]やDiOなどの脂溶性[[wikipedia:ja:蛍光色素|蛍光色素]]を注入し神経堤細胞を特異的に標識する方法が開発され<ref name="ref4"><pubmed> 2562671 </pubmed></ref><ref name="ref5"><pubmed> 8045344 </pubmed></ref>、鳥類胚ならびに[[wikipedia:ja:齧歯類|齧歯類]]胚において、神経堤の領域ごとに詳細な[[細胞系譜]]が明らかにされていった。 | ||
[[Image:図3 P0-Cre LacZ E12.5.png|thumb|225px|<b>図3 P0-Cre/LacZマウス(E12.5)</b>スケールバーを御願い致します。]] | [[Image:図3 P0-Cre LacZ E12.5.png|thumb|225px|<b>図3 P0-Cre/LacZマウス(E12.5)</b>スケールバーを御願い致します。]] | ||
歴史的に神経堤の研究は鳥類胚や両生類胚を用いたものが多く、[[wikipedia:ja:哺乳類|哺乳類]]での解析は十分に行われてこなかったが、1990年代後半以降、[[Cre-loxPシステム]]を利用した[[マウス]]の神経堤研究が急速に発展した。神経堤細胞特異的な遺伝子[[プロモーター]]下流にCre遺伝子を接続したマウス(P0Cre<ref name="ref6"><pubmed> 10419695 </pubmed></ref>、Wnt1Cre<ref name="ref7"><pubmed> 10725237 </pubmed></ref>、Ht-PaCre<ref name="ref8"><pubmed> 12812797 </pubmed></ref>、S4FCre<ref name="ref9"><pubmed> 19830815 </pubmed></ref>)と、Creの存在下で[[wikipedia:Beta-galactosidase|β-galactosidase]]や[[蛍光タンパク質]]を発現するレポーターマウスを交配することにより、生後でも神経堤由来細胞(neural crest-derived cells, NCDCs)でこれらの酵素や色素を発現し続けるマウスが作製された(図3)。これらのマウスを用いた実験により、これまで報告されてきたニワトリ・ウズラのキメラ実験やDiI トレーサー実験の結果が確証された。また、成体においても、神経堤由来の組織中に多分化能を有する未分化な神経堤由来細胞(神経堤幹細胞:neural crest stem cells<ref name="ref10">'''Maya Seiber-Blum (Author, Editor)'''<br>Neural Crest Stem Cells: Breakthroughs and Applications.<br>''Singapore, Singapore: World Scientific.'':2012</ref>)が存在することが明らかになった ([[wikipedia:ja:骨髄|骨髄]]<ref name="ref11"><pubmed> 18397758 </pubmed></ref>、脊髄後根神経節<ref name="ref11" />、心臓<ref name="ref12"><pubmed> 16186259 </pubmed></ref>、角膜<ref name="ref13"><pubmed> 16888282 </pubmed></ref>、虹彩<ref name="ref14"><pubmed> 21306482 </pubmed></ref>、歯髄<ref name="ref15"><pubmed> 22087335 </pubmed></ref>、嗅粘膜<ref name="ref16"><pubmed> 21943152 </pubmed></ref>)。神経堤幹細胞は自己の組織から採取可能であり、免疫[[wikipedia:ja:拒絶反応|拒絶反応]]や[[胚性幹細胞|胚性幹細胞]]が有する倫理的問題を避けることができるため、再生医療の細胞ソースとしても注目されている。また、頸部・肩の筋骨格の形成に神経堤細胞と中胚葉由来の細胞が共に貢献することも明らかなった<ref name="ref17"><pubmed> 16034409 </pubmed></ref>。さらに、感覚器プラコードから形成されると考えられていた[[wikipedia:ja:内耳|内耳]]<ref name="ref18"><pubmed> 22110056 </pubmed></ref>や[[嗅上皮]]の構築<ref name="ref16" /><ref name="ref19"><pubmed> 21543621 </pubmed></ref>に、神経堤細胞が貢献することも明らかとなった。 | 歴史的に神経堤の研究は鳥類胚や両生類胚を用いたものが多く、[[wikipedia:ja:哺乳類|哺乳類]]での解析は十分に行われてこなかったが、1990年代後半以降、[[Cre-loxPシステム]]を利用した[[マウス]]の神経堤研究が急速に発展した。神経堤細胞特異的な遺伝子[[プロモーター]]下流にCre遺伝子を接続したマウス(P0Cre<ref name="ref6"><pubmed> 10419695 </pubmed></ref>、Wnt1Cre<ref name="ref7"><pubmed> 10725237 </pubmed></ref>、Ht-PaCre<ref name="ref8"><pubmed> 12812797 </pubmed></ref>、S4FCre<ref name="ref9"><pubmed> 19830815 </pubmed></ref>)と、Creの存在下で[[wikipedia:Beta-galactosidase|β-galactosidase]]や[[蛍光タンパク質]]を発現するレポーターマウスを交配することにより、生後でも神経堤由来細胞(neural crest-derived cells, NCDCs)でこれらの酵素や色素を発現し続けるマウスが作製された(図3)。これらのマウスを用いた実験により、これまで報告されてきたニワトリ・ウズラのキメラ実験やDiI トレーサー実験の結果が確証された。また、成体においても、神経堤由来の組織中に多分化能を有する未分化な神経堤由来細胞(神経堤幹細胞:neural crest stem cells<ref name="ref10">'''Maya Seiber-Blum (Author, Editor)'''<br>Neural Crest Stem Cells: Breakthroughs and Applications.<br>''Singapore, Singapore: World Scientific.'':2012</ref>)が存在することが明らかになった ([[wikipedia:ja:骨髄|骨髄]]<ref name="ref11"><pubmed> 18397758 </pubmed></ref>、脊髄後根神経節<ref name="ref11" />、心臓<ref name="ref12"><pubmed> 16186259 </pubmed></ref>、角膜<ref name="ref13"><pubmed> 16888282 </pubmed></ref>、虹彩<ref name="ref14"><pubmed> 21306482 </pubmed></ref>、歯髄<ref name="ref15"><pubmed> 22087335 </pubmed></ref>、嗅粘膜<ref name="ref16"><pubmed> 21943152 </pubmed></ref>)。神経堤幹細胞は自己の組織から採取可能であり、免疫[[wikipedia:ja:拒絶反応|拒絶反応]]や[[胚性幹細胞|胚性幹細胞]]が有する倫理的問題を避けることができるため、再生医療の細胞ソースとしても注目されている。また、頸部・肩の筋骨格の形成に神経堤細胞と中胚葉由来の細胞が共に貢献することも明らかなった<ref name="ref17"><pubmed> 16034409 </pubmed></ref>。さらに、感覚器プラコードから形成されると考えられていた[[wikipedia:ja:内耳|内耳]]<ref name="ref18"><pubmed> 22110056 </pubmed></ref>や[[嗅上皮]]の構築<ref name="ref16" /><ref name="ref19"><pubmed> 21543621 </pubmed></ref>に、神経堤細胞が貢献することも明らかとなった。 |