「位置情報」の版間の差分

ナビゲーションに移動 検索に移動
36行目: 36行目:
 モルフォゲンの動的な濃度勾配の変化がよく解析されているのは、[[脊髄神経管]]の断面([[背腹軸]])における[[シグナル分子]]と領域決定の関係についてである。[[胚]]発生期の神経管には背腹軸に沿って多数の[[神経前駆領域]]、[[神経領域]]が出現する<ref name=Ribes2009><pubmed>20066087</pubmed></ref><ref><pubmed> 22821665</pubmed></ref>11,12 。(図2A)はその様子を模式的に表したもので、マウス10.5-11.5日胚、ニワトリ4-5日胚の脊髄レベルの神経管の断面を作成するとほぼ同様の様子が観察される。図中のdP1-dP6、p0-p3、pMNの各領域にはそれぞれ特有の性質を持つ神経前駆細胞が配置される。各前駆領域の細胞はさらに分化して、それぞれの前駆領域に対応する機能性の[[神経細胞]](ニューロン)を産出する(dI1-dI6、V0-V3、MN:各神経細胞がもつ性質については13<ref name=Alaynick2011><pubmed>21729788</pubmed></ref>を参照)。
 モルフォゲンの動的な濃度勾配の変化がよく解析されているのは、[[脊髄神経管]]の断面([[背腹軸]])における[[シグナル分子]]と領域決定の関係についてである。[[胚]]発生期の神経管には背腹軸に沿って多数の[[神経前駆領域]]、[[神経領域]]が出現する<ref name=Ribes2009><pubmed>20066087</pubmed></ref><ref><pubmed> 22821665</pubmed></ref>11,12 。(図2A)はその様子を模式的に表したもので、マウス10.5-11.5日胚、ニワトリ4-5日胚の脊髄レベルの神経管の断面を作成するとほぼ同様の様子が観察される。図中のdP1-dP6、p0-p3、pMNの各領域にはそれぞれ特有の性質を持つ神経前駆細胞が配置される。各前駆領域の細胞はさらに分化して、それぞれの前駆領域に対応する機能性の[[神経細胞]](ニューロン)を産出する(dI1-dI6、V0-V3、MN:各神経細胞がもつ性質については13<ref name=Alaynick2011><pubmed>21729788</pubmed></ref>を参照)。
個々の領域を分子レベルで特徴付けることができるのは、領域特異的に発現する[[ホメオボックス]]型または[[bHLH]]型[[転写因子]]が同定されているためである(同定されている転写因子の一部を図2Aに掲載した:詳細については13<ref name=Alaynick2011 />を参照)。
個々の領域を分子レベルで特徴付けることができるのは、領域特異的に発現する[[ホメオボックス]]型または[[bHLH]]型[[転写因子]]が同定されているためである(同定されている転写因子の一部を図2Aに掲載した:詳細については13<ref name=Alaynick2011 />を参照)。
これらの領域はどの個体でも配置が変わることがないため、「パターン」と呼ばれており、そのパターン決定は、RP([[蓋板]])やFP([[底板]])からそれぞれ分泌されるBMP、Wnt、ソニック・ヘッジホッグ(Sonic Hedgehog; Shh)といったモルフォゲンの濃度勾配によっている。つまり、これら各領域の細胞の分化方向はモルフォゲンの種類と濃度という位置情報によって決定されるのであり、その意味で神経管の背腹軸は位置情報を解析する上で良いモデル系である。
これらの領域はどの個体でも配置が変わることがないため、「パターン」と呼ばれており、そのパターン決定は、RP([[蓋板]])やFP([[底板]])からそれぞれ分泌される[[BMP]]、Wnt、ソニック・ヘッジホッグ(Sonic Hedgehog; Shh)といったモルフォゲンの濃度勾配によっている。つまり、これら各領域の細胞の分化方向はモルフォゲンの種類と濃度という位置情報によって決定されるのであり、その意味で神経管の背腹軸は位置情報を解析する上で良いモデル系である。


== ソニック・ヘッジホッグの動的な濃度勾配の変化と、細胞の分化方向の決定 ==
== ソニック・ヘッジホッグの動的な濃度勾配の変化と、細胞の分化方向の決定 ==

案内メニュー