105
回編集
Yutakafurutani (トーク | 投稿記録) 細編集の要約なし |
Yutakafurutani (トーク | 投稿記録) 細編集の要約なし |
||
36行目: | 36行目: | ||
[[Image:Yutakafurutani fig 4.jpg|thumb|350px|'''図4.脊髄における交連神経細胞の軸索誘導''']] | [[Image:Yutakafurutani fig 4.jpg|thumb|350px|'''図4.脊髄における交連神経細胞の軸索誘導''']] | ||
神経細胞はその軸索を、周囲に存在する様々な[[軸索誘引因子]]や[[軸索反発因子]]を認識しながら伸長させ、最終的に正しい標的細胞と機能的なシナプスを形成する。この[[軸索ガイダンス]]機構には多くのIgSF分子群が関与している。その代表例として[[脊髄]]における[[交連神経]]細胞の[[軸索投射]] | 神経細胞はその軸索を、周囲に存在する様々な[[軸索誘引因子]]や[[軸索反発因子]]を認識しながら伸長させ、最終的に正しい標的細胞と機能的なシナプスを形成する。この[[軸索ガイダンス]]機構には多くのIgSF分子群が関与している。その代表例として[[脊髄]]における[[交連神経]]細胞の[[軸索投射]]が挙げられる(図4)。この過程では、[[NgCAM]]、[[アクソニン-1]]、[[DCC]]、[[NrCAM]]及び[[Robo]]など多くのIgSF分子群が重要な働きを果たす。 | ||
脊髄の背側部に存在する交連神経細胞の軸索は、NgCAM及びアクソニン-1の作用によって束状化されながら、[[底板]](floor plate)から分泌される誘引因子[[ネトリン]](netrin)の濃度勾配に従って腹側方向へと伸長する。この時、ネトリンの受容体であるDCCが交連軸索に発現して機能している。次に、交連軸索に発現するアクソニン-1と底板に発現するNrCAMの相互作用によって、軸索の底板への侵入が起こる。 | |||
いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子[[スリット]](slit)と軸索に発現するその受容体[[Robo]]の相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。 | いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子[[スリット]](slit)と軸索に発現するその受容体[[Robo]]の相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。 |
回編集