「前後軸」の版間の差分

ナビゲーションに移動 検索に移動
1,462 バイト追加 、 2013年3月23日 (土)
編集の要約なし
編集の要約なし
45行目: 45行目:
]]
]]


 神経板の前後軸極性の確立にともない、初期脳原基には[[ニューロメア]]([[neuromere]])と呼ばれる分節構造が形成される。とくに、菱脳では[[ロンボメア]]([[rhombomere]])と呼ばれる分節(どのようなものか簡単にご説明いただけると読者の理解の助けになるかと思います。村上)が存在する(図2) <ref name=ref5 />。発生初期段階のマウス胚やニワトリ胚にレチノイン酸を投与すると、菱脳におけるHox遺伝子の発現境界が前方へシフトする(もともとHox遺伝子の発現がロンボメアの境界と符号しているとの説明がないので解りにくいかも知れません。村上)。またレチノイン酸が欠乏した胚では、菱脳におけるHox遺伝子の発現境界が後方にシフトする。これらのことから、生体内では、菱脳後方から前方に向かって形成されるレチノイン酸の濃度勾配が、菱脳の前後パターン形成に関与すると考えられている<ref name=ref5 />。
 神経板の前後軸極性の確立にともない、初期脳原基には[[ニューロメア]]([[neuromere]])と呼ばれる分節構造が形成される。分節の形成は、神経管を構成する神経上皮細胞の形態変化によって引き起こされ、神経管の基底膜側におけるくびれとして認識される。そのくびれの位置における神経管の脳室面側では、逆に隆起が見られる。菱脳ではロンボメア(rhombomere)と呼ばれる分節が存在する(図2)<ref name=ref5 />。Hox遺伝子群の発現は、第一分節には見られないが、第二分節より後方では、Hox遺伝子群の発現前方境界が、ロンボメア間の境界と一致している(図2)。発生初期段階のマウス胚やニワトリ胚にレチノイン酸を投与すると、菱脳におけるHox遺伝子の発現境界が前方へシフトする(もともとHox遺伝子の発現がロンボメアの境界と符号しているとの説明がないので解りにくいかも知れません。村上)。またレチノイン酸が欠乏した胚では、菱脳におけるHox遺伝子の発現境界が後方にシフトする。これらのことから、生体内では、菱脳後方から前方に向かって形成されるレチノイン酸の濃度勾配が、菱脳の前後パターン形成に関与すると考えられている<ref name=ref5 />。


 また、[[中脳・後脳境界]](midbrain hindbrain boundary: MHB)の後脳側に発現するFGF8の作用により、菱脳第一分節は小脳へと運命づけられる<ref name=ref5 />。各ロンボメア間では、[[エフリン]] ([[ephrin]]) や[[エフリン受容体]] ([[Eph]]) による反発作用により境界を超えて前後に細胞が混じり合わない(注: 細胞移動が起こらない境界で囲まれた領域はコンパートメントと呼ばれ、コンパートメント間の境界はコンパートメント境界と呼ばれている)。さらに、ロンボメア境界付近の細胞は、[[ロンボメア境界細胞]](rhombomere boundary cell)と呼ばれる特殊化した細胞群に変化し、FGFやWntなどのシグナル分子を前後軸方向に分泌し、近接する細胞の神経分化を制御するシグナリングセンターとして機能することが示唆されている<ref name=ref5 />。
 また、[[中脳・後脳境界]](midbrain hindbrain boundary: MHB)の後脳側に発現するFGF8の作用により、菱脳第一分節は小脳へと運命づけられる<ref name=ref5 />。各ロンボメア間では、[[エフリン]] ([[ephrin]]) や[[エフリン受容体]] ([[Eph]]) による反発作用により境界を超えて前後に細胞が混じり合わない(注: 細胞移動が起こらない境界で囲まれた領域はコンパートメントと呼ばれ、コンパートメント間の境界はコンパートメント境界と呼ばれている)。さらに、ロンボメア境界付近の細胞は、[[ロンボメア境界細胞]](rhombomere boundary cell)と呼ばれる特殊化した細胞群に変化し、FGFやWntなどのシグナル分子を前後軸方向に分泌し、近接する細胞の神経分化を制御するシグナリングセンターとして機能することが示唆されている<ref name=ref5 />。
57行目: 57行目:
[[image:前後軸図3.jpg|thumb|300px|'''図3.大脳皮質原基の前後軸パターン化'''<br>大脳皮質原基における遺伝子発現 (<ref name=ref14><pubmed>18524571</pubmed></ref>を基に作成) F/M, prefrontal/motor cortex (前頭前皮質/運動野); S1, primary somatosensory cortex (一次体性感覚野); A1,primary auditory cortex (一次聴覚野); V1, primary visual cortex (一次視覚野)]]
[[image:前後軸図3.jpg|thumb|300px|'''図3.大脳皮質原基の前後軸パターン化'''<br>大脳皮質原基における遺伝子発現 (<ref name=ref14><pubmed>18524571</pubmed></ref>を基に作成) F/M, prefrontal/motor cortex (前頭前皮質/運動野); S1, primary somatosensory cortex (一次体性感覚野); A1,primary auditory cortex (一次聴覚野); V1, primary visual cortex (一次視覚野)]]


 前脳は間脳と終脳に分けられる。予定前脳領域の神経板では、[[前方神経境界領域]] (anterior neural boundary: ANBまたはanterior neural ridge: ANR) が二次シグナリングセンター(少し説明があった方が良いように思います。村上)として機能し、分泌されるFGF8が前脳のパターン化に重要である<ref name=ref5 />。様々な転写因子遺伝子の発現パターンと形態学的な境界との比較により、前脳を前後軸に沿って6つの[[プロソメア領域]] (p1からp6) に区画化する[[プロソメアモデル]](prosomeric model)が提唱された(そのような考えに至る経緯のようなものが少し書いてあるとベターかと思いました。村上)<ref name=ref11><pubmed>7939711</pubmed></ref>
 前脳は間脳と終脳に分けられる。予定前脳領域神経板において非神経外胚葉と接する狭い領域は、前方神経境界領域 (anterior neural boundary: ANBまたはanterior neural ridge: ANR) と呼ばれている。この領域に発現するシグナリング分子FGF8は、近接する側方前脳領域において、脳形成に重要な転写因子BF1の発現を誘導する。したがって、前方神経境界領域は、前後軸が決定された後、さらに前脳をパターン化するためのシグナリングセンターとして重要である [5]。
 ロンボメア形成や各々のHox遺伝子の発現境界が前後にずれていることは、菱脳の前後軸に沿った機能の違いを生み出すための重要なメカニズムであるが、前脳にも分節構造が存在するのかどうかは、前脳の多様な機能を考える上で、重要な問題であった。ルービンシュタインらは、ショウジョウバエの頭部形成に関わるホメオボックス転写因子の脊椎動物ホモログ遺伝子の発現をマウス胚前脳において調べ、個々遺伝子が前後軸に沿っていくつかの決まった位置に発現境界を示すことを発見した。このような遺伝子発現様式に基づき、前脳には前後軸に沿って6つの分節(プロソメア)(p1からp6) が存在するとするプロソメアモデル(prosomeric model)が提唱された<ref name=ref11><pubmed>7939711</pubmed></ref>。このモデルでは、p1-p3は視床を形成する間脳後方領域に相当し、p4-p6は間脳前方領域(視床下部)と終脳を形成する二次前脳胞(secondary procencephalon)に相当する。その後、視床と視床下部の区画に関する研究が進展し、p3に含まれる領域の変更と視床下部におけるプロソメア境界が再検討され、初期モデルのp4-p6領域は一区画に修正されている<ref name=ref12><pubmed>12948657</pubmed></ref>(図2)。p2/p3境界は、Six3およびFezf1/2の後方発現境界とIrx3の前方発現境界に一致している<ref name=ref5 />。Six3や[[Fezf1]]/[[Fezf2|2]]はp2/3境界形成に必須の遺伝子である(図2)<ref name=ref5 />。p2/p3境界には[[ソニックヘッジホッグ]]([[sonic hedgehog]]: [[Shh]]) を発現する[[Zli 領域]] ([[zona limitance intrathalamica]])が形成され、[[間脳原基]]から生じる[[視床]]の前後軸パターン化に関与している<ref name=ref5 />(図2)。間脳・中脳境界は、間脳後部に発現するPax6と中脳に発現するEn2の相互抑制機構により確立される(図2)。


 現在では、p4からp6領域は、secondary prosencehplaon(終脳と視床下部)として一区画とされている<ref name=ref12><pubmed>12948657</pubmed></ref>。(図2)。FGF8は前脳においては、[[Six3]]の発現を誘導する。p2/p3境界は、Six3およびFezf1/2の後方発現境界とIrx3の前方発現境界に一致している<ref name=ref5 />。Six3や[[Fezf1]]/[[Fezf2|2]]はp2/3境界形成に必須の遺伝子である(図2)<ref name=ref5 />。p2/p3境界には[[ソニックヘッジホッグ]]([[sonic hedgehog]]: [[Shh]]) を発現する[[Zli 領域]] ([[zona limitance intrathalamica]])が形成され、[[間脳原基]]から生じる[[視床]]の前後軸パターン化に関与している<ref name=ref5 />(図2)。間脳・中脳境界は、間脳後部に発現するPax6と中脳に発現するEn2の相互抑制機構により確立される(図2)。
 二次前脳胞の背側から腹側にかけての領域からは、将来の[[大脳皮質]][[線条体]][[淡蒼球]][[視床下部]]が派生する。脳胞形成後の終脳先端正中部に位置するcommissural plateにはFGF8が発現している (図2)。FGF8をマウス大脳皮質原基の前方領域に発現させると、本来前方に位置する領野が後方へとシフトする。一方、FGF8を大脳皮質原基の後方領域に発現させると鏡像対称な[[体性感覚野]][[バレル構造]]が形成される。これらの結果から、commissural plate から分泌されるFGF8の濃度勾配が大脳皮質原基の前後軸パターン化を制御していることが示唆された<ref name=ref13><pubmed>11567107</pubmed></ref>


 p3の前方部の背側から腹側にかけての領域からは、将来の[[大脳皮質]]、[[線条体]]、[[淡蒼球]]、[[視床下部]]が派生する。脳胞形成後の終脳先端正中部に位置するcommissural plateにはFGF8が発現している (図2)。FGF8をマウス大脳皮質原基の前方領域に発現させると、本来前方に位置する領野が後方へとシフトする。一方、FGF8を大脳皮質原基の後方領域に発現させると鏡像対称な[[体性感覚野]][[バレル構造]]が形成される。これらの結果から、commissural plate から分泌されるFGF8の濃度勾配が大脳皮質原基の前後軸パターン化を制御していることが示唆された<ref name=ref13><pubmed>11567107</pubmed></ref>。
 また、大脳皮質原基の前方ではPax6, [[Sp8]]の発現が高く、後方ではEmx2, [[Couptf1]]の発現が高く、FGF8 はEmx2の発現を抑制する。これらの転写因子の遺伝子変異マウスの大脳皮質では、領野の位置や大きさが前後軸に沿って変化することから、これらの転写因子は、大脳皮質における各領野の位置を決定するパターン化因子として機能している (図3) <ref name=ref14><pubmed>18524571</pubmed></ref>。
 
 また、大脳皮質原基の前方ではPax6, [[Sp8]]の発現が高く、後方ではEmx2, [[Couptf1]]の発現が高く、FGF8 はEmx2の発現を抑制する。これらの転写制御因子は、大脳皮質における各領野の位置を決定するパターン化因子として機能している (図3) <ref name=ref14><pubmed>18524571</pubmed></ref>。


== 関連項目 ==
== 関連項目 ==

案内メニュー