「一酸化窒素」の版間の差分

編集の要約なし
編集の要約なし
8行目: 8行目:
</div>
</div>


英語名:nitric oxide 独:Stickstoffmonoxid 仏:monoxyde d'azote
英語名:nitric oxide 独:Stickstoffmonoxid 仏:monoxyde d'azote 略称:NO<br>
同義語:血管内皮細胞由来弛緩因子、EDRF
 
{{box|text= 一酸化窒素は分子量30の不安定な物質である。生体内ではシグナル伝達分子として働く。アルギニンから一酸化窒素合成酵素により合成され、グアニル酸シクラーゼを活性化することでcGMP産生を向上させる、タンパク質をニトロシル化、ニトロ化する、あるいは活性化酸素として機能するなど、幾つかの作用機序が知られている。生体における機能としては、シナプス可塑性の調節因子、脳血流量の調節因子、神経細胞死への関与などが挙げられる。}}


同義語:血管内皮細胞由来弛緩因子、EDRF、
{{Chembox
{{Chembox
| Verifiedfields = changed
| Verifiedfields = changed
108行目: 110行目:


==合成==
==合成==
[[ファイル:NOS reaction.png|thumb|left|350px|'''図1. 一酸化窒素合成経路'''<br>Arg: アルギキン、NOHLA: Nω-ヒドロキシ-L-アルギニン、NADPH: ニコチンアミドアデニンジヌクレオチドリン酸。図中でオレンジ色で示されているのは酵素のヘム部位。Wikipediaより。]]
[[ファイル:NOS reaction.png|thumb|right|350px|'''図1. 一酸化窒素合成経路'''<br>Arg: アルギキン、NOHLA: Nω-ヒドロキシ-L-アルギニン、NADPH: ニコチンアミドアデニンジヌクレオチドリン酸。図中でオレンジ色で示されているのは酵素のヘム部位。Wikipediaより。]]


 NOは生体内では[[一酸化窒素合成酵素]]により[[アルギニン]]から[[NADPH]]を[[wj:補酵素|補酵素]]として合成される(図1)。アルギニンは[[Nω-ヒドロキシ-L-アルギニン]]をへて、最終的にNOと[[シトルリン]]となる。
 NOは生体内では[[一酸化窒素合成酵素]]により[[アルギニン]]から[[NADPH]]を[[wj:補酵素|補酵素]]として合成される(図1)。アルギニンは[[Nω-ヒドロキシ-L-アルギニン]]をへて、最終的にNOと[[シトルリン]]となる。
146行目: 148行目:
 NOは[[可溶性グアニル酸シクラーゼ]]を活性化し、細胞内の[[cGMP]]レベルを上げる。[[グアニル酸シクラーゼ]]の活性化は、NOが酵素の活性中心のヘム鉄に高い親和性を有する性質に依存している。生成されたcGMPは複数の経路を通じて下流へシグナルを伝達する。
 NOは[[可溶性グアニル酸シクラーゼ]]を活性化し、細胞内の[[cGMP]]レベルを上げる。[[グアニル酸シクラーゼ]]の活性化は、NOが酵素の活性中心のヘム鉄に高い親和性を有する性質に依存している。生成されたcGMPは複数の経路を通じて下流へシグナルを伝達する。
#[[cGMP依存性タンパクリン酸化酵素]](Protein kinase G; PKG)を活性化し、種々のターゲット分子の働きをリン酸化によって調節する。脳の[[シナプス可塑性]]の調節に関連しては、海馬で[[CaMKII]]<ref><pubmed>21255668</pubmed></ref>や[[RhoA]] <ref><pubmed>15694326</pubmed></ref>、[[Vasodilator-stimulated phosphoprotein]]([[VASP]])<ref><pubmed>24127602</pubmed></ref>などがPKGのターゲットであると報告されている。[[小脳]]においても[[G-substrate]]や[[IP3タイプI受容体|IP<sub>3</sub>タイプI受容体]]などがPKGによってリン酸化されることが知られている<ref><pubmed>22340725</pubmed></ref>。[[Protein kinase A]]と同様に、[[cAMP responsive element 結合因子]]([[CREB]])をリン酸化し、シナプス可塑性に関連したタンパク合成を調節することも報告されている。
#[[cGMP依存性タンパクリン酸化酵素]](Protein kinase G; PKG)を活性化し、種々のターゲット分子の働きをリン酸化によって調節する。脳の[[シナプス可塑性]]の調節に関連しては、海馬で[[CaMKII]]<ref><pubmed>21255668</pubmed></ref>や[[RhoA]] <ref><pubmed>15694326</pubmed></ref>、[[Vasodilator-stimulated phosphoprotein]]([[VASP]])<ref><pubmed>24127602</pubmed></ref>などがPKGのターゲットであると報告されている。[[小脳]]においても[[G-substrate]]や[[IP3タイプI受容体|IP<sub>3</sub>タイプI受容体]]などがPKGによってリン酸化されることが知られている<ref><pubmed>22340725</pubmed></ref>。[[Protein kinase A]]と同様に、[[cAMP responsive element 結合因子]]([[CREB]])をリン酸化し、シナプス可塑性に関連したタンパク合成を調節することも報告されている。
#また、cGMPはcAMPと同様に[[cyclic nucleotide-gated]](CNG)イオンチャンネル]]を開口させる。これらのCNGチャンネルは特に[[視覚]]や[[嗅覚]]の受容に重要である<ref><pubmed>7946333</pubmed></ref> <ref><pubmed>17724338</pubmed></ref>。
#また、cGMPはcAMPと同様に[[イオンチャネル#HCNチャネルとCNGチャネル|環状ヌクレオチド依存性 (cyclic nucleotide-gated; CNG)イオンチャンネル]]を開口させる。これらのCNGチャンネルは特に[[視覚]]や[[嗅覚]]の受容に重要である<ref><pubmed>7946333</pubmed></ref> <ref><pubmed>17724338</pubmed></ref>。
#cGMPは、[[cAMP特異的フォスフォジエステラーゼ]](PDE)の活性を抑制または増強させるため、一部のcGMPの作用は、これにより起こるとされる。上昇したcGMP はそれ自身、PDEによって速やかに分解され、その作用を消失する。
#cGMPは、[[cAMP特異的ホスホジエステラーゼ]](PDE)の活性を抑制または増強させるため、一部のcGMPの作用は、これにより起こるとされる。上昇したcGMP はそれ自身、PDEによって速やかに分解され、その作用を消失する。


===タンパク質のニトロシル化===
===タンパク質のニトロシル化===