「シングルセルRNAシーケンシング」の版間の差分

61行目: 61行目:
===データ処理の流れ===
===データ処理の流れ===
====総論====
====総論====
 Illumina社に代表される次世代シーケンサーを用いて得られた結果は、ベースコールや細胞バーコードを用いたdemultiplexingなどの基礎解析を行うことで、各細胞における遺伝子の発現量のマトリックスを出力する。例えば、10XGenomics社のChromiumプラットフォームを用いた場合、10XGenomics社が提供するCell Rangerのmkrefコマンド(Linux上で作動, [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr])などにより、各生物種ごとのレファレンス配列リスト([https://www.ncbi.nlm.nih.gov/grc]、マウスやヒトでは既製のものを利用できる)などを参考にしながら、細胞と転写産物量の対応マトリックスを作製する。その後のデータの処理についても、10x Genomics社がソフトウェアLoupeを提供している。しかしながら、その後のデータ解析を考慮して、[[R]], [[Python]], [[MATLAB]]などのデータ解析のための汎用プログラミング言語やコードで扱えるオブジェクトに変換するのが通常である。
 Illumina社に代表される次世代シーケンサーを用いて得られた結果は、ベースコールや細胞バーコードを用いたdemultiplexingなどの基礎解析を行うことで、各細胞における遺伝子の発現量のマトリックスを出力する。例えば、10XGenomics社のChromiumプラットフォームを用いた場合、10XGenomics社が提供するCell Rangerの[https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/tutorial_mr mkrefコマンド](Linux上で作動)などにより、各生物種ごとの[https://www.ncbi.nlm.nih.gov/grc レファレンス配列リスト](マウスやヒトでは既製のものを利用できる)などを参考にしながら、細胞と転写産物量の対応マトリックスを作製する。その後のデータの処理についても、10x Genomics社がソフトウェアLoupeを提供している。しかしながら、その後のデータ解析を考慮して、[[R]], [[Python]], [[MATLAB]]などのデータ解析のための汎用プログラミング言語やコードで扱えるオブジェクトに変換するのが通常である。
 
 scRNA-seq解析のためには、数多くのツールが公開されている。これらのツールは、バージョンが更新されたり、新しいものに置き換えられることがあるので、実際に利用する場合は最新の動向に注意を払う必要がある。scRNA-seqの解析に必要なツールは、[https://www.scrna-tools.org scRNA-tools], [https://github.com/seandavi/awesome-single-cell Awesome single cell], [https://www.bioconductor.org Bioconductor]などで紹介されており、ほとんどがダウンロード可能である。また、[[bioRxiv]]などの査読前のプレプリントサーバで公開されて、随時試用、評価されていくものが多く、scRNA-seqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。


 scRNA-seq解析のためには、数多くのツールが公開されている。これらのツールは、バージョンが更新されたり、新しいものに置き換えられることがあるので、実際に利用する場合は最新の動向に注意を払う必要がある。scRNA-seqの解析に必要なツールは、scRNA-tools [https://www.scrna-tools.org], Awesome single cell [https://github.com/seandavi/awesome-single-cell], Bioconductor[https://www.bioconductor.org]などで紹介されており、ほとんどがダウンロード可能である。また、[[bioRxiv]]などの査読前のプレプリントサーバで公開されて、随時試用、評価されていくものが多く、scRNA-seqのデータ(下記参考)とともに、オープンサイエンス実践の好例となっている。
====Seurat====
====Seurat====
 ここでは、scRNA-seqデータ解析のために最もよく利用されているRを用いたパッケージ「Seurat」<ref name=Butler2018><pubmed>29608179</pubmed></ref> <ref><pubmed> 31178118 </pubmed></ref>を中心に紹介しておきたい。なお、一部の解析操作は、University of WashingtonのCole Trapnell研究室で開発されてきた軌道推定(下記参考)によく使用されるMonocle3でも可能である([https://cole-trapnell-lab.github.io/monocle3/])。Pythonを利用したものでは、ドイツ・ミュンヘンInstitute of Computational Biologyの Fabian Theisらが開発しているScanpyが有名である<ref><pubmed> 29409532</pubmed></ref>。
 ここでは、scRNA-seqデータ解析のために最もよく利用されているRを用いたパッケージ「Seurat」<ref name=Butler2018><pubmed>29608179</pubmed></ref> <ref><pubmed> 31178118 </pubmed></ref>を中心に紹介しておきたい。なお、一部の解析操作は、University of WashingtonのCole Trapnell研究室で開発されてきた軌道推定(下記参考)によく使用されるMonocle3でも可能である([https://cole-trapnell-lab.github.io/monocle3/])。Pythonを利用したものでは、ドイツ・ミュンヘンInstitute of Computational Biologyの Fabian Theisらが開発しているScanpyが有名である<ref><pubmed> 29409532</pubmed></ref>。