「細胞外プロテアーゼ」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
 
(3人の利用者による、間の43版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">鈴木 春満</font><br>
''奈良先端大学''<br>
DOI:<selfdoi /> 原稿受付日:2012年5月30日 原稿完成日:2012年8月11日<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
</div>
英:extracellular protease, extracellular proteinase  
英:extracellular protease, extracellular proteinase  


 蛋白質、ペプチドを形成する基本的な結合(ペプチド結合)を切断する酵素をプロテアーゼ(protease)と総称する。プロテイネース(proteinase)と呼ぶこともありこちらの方が正式名称であるが、日本語でも英語でもプロテアーゼの方が一般的に使われている。ペプチド結合を切断するのでペプチデースと呼ぶこともある。たとえばプロテアーゼ活性を測定するためオリゴペプチド合成基質を用いて測定するとプロテアーゼ活性であっても、正確にはペプチデース活性と記載する。プロテアーゼには細胞外作用型と細胞内作用型の2種類があり作用機序そのものは変わらないが、シグナル配列を持ち細胞外へ分泌されるかどうかによって機能は大きく異なる。ここでは細胞外作用型つまり細胞外プロテアーゼについて概説する。切断される蛋白質、もしくはペプチドはプロテアーゼによって抱え込まれ、その活性部位で切断される。プロテアーゼはいくつかのタイプに分類される。触媒部位を形成するアミノ酸による分類およびターゲットとなる蛋白質の基質特異性による分類である。前者ではプロテアーゼの結合サイトとハサミの部分を活性部位の特徴による分類がある。アミノ酸のセリンを活性部位にもつものはセリンプロテアーゼと呼び、同様にシステインプロテアーゼ、アスパラギン酸プロテアーゼおよびメタロ(金属)プロテアーゼなどがある。
{{box|text=
 [[wikipedia:ja:タンパク質|タンパク質]]、[[wikipedia:ja:ペプチド|ペプチド]]を形成する[[wikipedia:ja:ペプチド結合|ペプチド結合]]を切断する酵素をプロテアーゼ(protease)と総称する。プロテアーゼには細胞外作用型と細胞内作用型の2種類があり作用機序そのものは変わらないが、[[wikipedia:ja:シグナル配列|シグナル配列]]を持ち細胞外へ分泌されるかどうかによって機能は大きく異なる。ここでは細胞外作用型つまり細胞外プロテアーゼについて概説する。
}}


== セリンプロテアーゼ ==
== 細胞外プロテアーゼとは ==


 セリンプロテアーゼはセリン、ヒスチジン、アスパラギン酸の3つのアミノ酸によって活性中心が形成されることが特徴である(図3)
 タンパク質、ペプチドを形成する基本的な結合(ペプチド結合)を切断する酵素をプロテアーゼ(protease)と総称する。プロテイネース(proteinase)と呼ぶこともありこちらの方が正式名称であるが、日本語でも英語でもプロテアーゼの方が一般的に使われている。ペプチド結合を切断するのでペプチデースと呼ぶこともある。たとえばプロテアーゼ活性を測定するため[[wikipedia:ja:オリゴペプチド|オリゴペプチド]]合成基質を用いて測定するとプロテアーゼ活性であっても、正確にはペプチデース活性と記載する。プロテアーゼには細胞外作用型と細胞内作用型の2種類があり作用機序そのものは変わらないが、シグナル配列を持ち細胞外へ分泌されるかどうかによって機能は大きく異なる。ここでは細胞外作用型つまり細胞外プロテアーゼについて概説する。切断されるタンパク質、もしくはペプチドはプロテアーゼによって抱え込まれ、その活性部位で切断される。


 セリンプロテアーゼの一種、トロンビン、組織プラスミノーゲンアクティベータ(tissue plasminogen activator;tPA)と プラスミン(plasmin)をトロンビン様プロテアーゼは、血液凝固線溶系および炎症反応での役割が古くからよく知られている。その他、トリプシン様プロテアーゼは食物消化の機能が最初に明らかにされた。しかし最近、脳内においてセリンプロテアーゼが、神経系の発達、維持、[[可塑性]][[疾患]]等に重要な役割を果たしていることが明らかとなって注目されるようになって来た。
 プロテアーゼは触媒部位を形成する[[wikipedia:ja:アミノ酸|アミノ酸]]によっていくつかのタイプに分類される。アミノ酸の[[wikipedia:ja:セリン|セリン]]を活性部位にもつものは[[細胞外プロテアーゼ#.E3.82.BB.E3.83.AA.E3.83.B3.E3.83.97.E3.83.AD.E3.83.86.E3.82.A2.E3.83.BC.E3.82.BC|セリンプロテアーゼ]]と呼び、同様に、[[細胞外プロテアーゼ#.E3.82.A2.E3.82.B9.E3.83.91.E3.83.A9.E3.82.AE.E3.83.B3.E9.85.B8.E3.83.97.E3.83.AD.E3.83.86.E3.82.A2.E3.83.BC.E3.82.BC|アスパラギン酸プロテアーゼ]]および[[細胞外プロテアーゼ#.E3.83.A1.E3.82.BF.E3.83.AD.E3.83.97.E3.83.AD.E3.83.86.E3.82.A2.E3.83.BC.E3.82.BC|メタロ(金属)プロテアーゼ]]などと呼ぶ。更に、詳細な分類はプロテアーゼの結合サイトやハサミの部分を活性部位、及び、ターゲットとなるタンパク質の基質特異性によって行う(以下参照)。


=== トロンビン(thrombin)  ===
{| border="1" cellspacing="1" cellpadding="1"
|+'''表 細胞外プロテアーゼの基質と機能発現'''
|-
| style="text-align: center" | プロテアーゼ
| style="text-align: center" | 基質(候補)
| style="text-align: center" | プロテアーゼの発現調節に関わる機構
| style="text-align: center" | プロテアーゼに関係すると考えられている機能
|-
| [[Thrombin]]
| PAR
| 発達、虚血、損傷、[[アルツハイマー病]]
| 回復(低濃度)、神経変性、細胞死(高濃度)
|-
| [[TPA]]
| プラスミノーゲン、GluR1サブユニット、NR1
| 電気生理刺激、興奮毒性、抑制ストレス、運動学習、浸透ストレス
| 神経突起伸長、シナプス形成、L-LTP
|-
| [[Plasmin]]
| ラミニン、proBDNF、NR2A、PAR1
| tPA活動に依存
| L-LTP
|-
| [[Neurotrypsin]]
| アグリン
| 神経活動、発達
| シナプス形成、非症候群精神遅滞
|-
| [[Neuropsin]]
| L1, EphB2, [[ニューレグリン]]1
| 神経活動、電気生理刺激、豊かな環境(enviromental enrichment)、ストレス
| E-LTP、[[ワーキングメモリー]]、情動記憶
|-
| [[MMP-9]]
| コラーゲン、ゼラチン、βジストログリカン、ICAM-5
| 神経活動、電気生理刺激
| L-LTP、シナプス形成
|-
| [[ADAM]]-10, 17
| アミロイドβ前駆体蛋白質 (APP)、[[Notch]]、[[Delta]]
| アルツハイマー病、多発性硬化症
| 神経分化
|-
| ADAM-22, 23
| 活性ドメインなし
| 発達
| 運動、ミエリン形成
|-
| [[ADAMTS]]-1, 8, 9, 15
| [[アグリカン]]
| アルツハイマー病(ADAMTS-1)、[[ダウン症]](ADAMTS-1)、[[脳虚血]](ADAMTS-1, 8, 9)
| 神経変性疾患
|-
| ADAMTS-4, 5
| アグリカン、[[バーシカン]]、[[ブレビカン]]
| 脳虚血(ADAMTS-4)
| 神経可塑性、神経謬腫侵襲
|-
| [[BACE1]]
| アミロイドβ前駆体蛋白質 (APP)
| アルツハイマー病
| [[老人斑]]
|}


 [[血液脳関門]]が損なわれる病態においてトロンビンは、[[脳実質]]内に入る他、脳内においても合成されることが知られる。従って、病態のみならず、正常脳においても何らかの役割を果たすことが示唆されている。[[培養神経細胞]]や[[神経芽細胞腫細胞]]にトロンビンを投与すると[[神経突起伸長]]を阻害する。高濃度のトロンビンで処理すると、[[神経細胞]]と[[アストロサイト]]の両方でアポトーシスが誘導される。一方、トロンビンは[[神経可塑性]]にも関係する。海馬スライスにトロンビンをバスアプライすると、[[NMDA]]電流が増強される。短時間のトロンビン暴露はゆっくりとした長続きする[[fEPSP]]を誘導する<ref><pubmed> 21782155 </pubmed></ref><ref><pubmed>21893397</pubmed></ref>
== セリンプロテアーゼ  ==


=== 組織プラスミノーゲンアクチベーター(tissue plasminogen activator; tPA)  ===
 セリンプロテアーゼはセリン、[[wikipedia:ja:ヒスチジン|ヒスチジン]]、アスパラギン酸の3つのアミノ酸によって活性中心が形成されることが特徴である(図3参照)。


[[Image:図tPA2.jpg|thumb|300px|<b>図1.tPAのレセプターを介したシグナル伝達経路</b><br />参考:中枢神経系におけるtPAの役割 永井信夫 血栓止血誌20(1)18~22 2009]] tPAは神経細胞、[[グリア細胞]]、上皮細胞によって合成分泌され、海馬など様々な脳領域に高発現している。多くの研究によってtPAは[[シナプス]]機能を修飾することが示されてきた。tPAの神経機能修飾作用としてタンパク質分解活性依存的なものと非依存的なものの2種類あることが知られている。tPAのタンパク質分解活性は[[GluN1]]サブユニットの切断を介してNMDAシグナルを増強する。一方、tPAはNMDA受容体GluN2Bサブユニットと結合して、そのリン酸化を促進する。この結果[[EPK]]/[[MAPK]]経路の活性化を引き起こす。さらに、tPAはlow-density lipoprotein receptor related protein(LRP)と結合してNMDAシグナルに間接的に影響を与える可能性がある。その他tPAはアネキシンA2と結合して[[ミクログリア]]の活性化を行うことが示唆されている。これらの経路を通じてtPAは神経可塑性の調節に深く関わる(図1)。海馬スライスにおいて、tPA活性を阻害するかあるいはtPA遺伝子欠損マウスを用いるとlate phase long-term potentiation(L-LTP)が阻害される。tPA欠損マウスは[[能動的回避反応]]と[[ステップダウン型回避試験]]の成績の低下や新規空間と物体への反応の欠如、[[文脈付恐怖条件づけ]]のすくみの低下、[[小脳]]依存的な運動学習タスクの獲得の低下など学習タスクで障害を示した。
 セリンプロテアーゼの一種、[[wikipedia:ja:トロンビン|トロンビン]][[wikipedia:ja:組織プラスミノーゲンアクティベータ|組織プラスミノーゲンアクティベータ]](tissue plasminogen activator;tPA)[[wikipedia:ja:プラスミン|プラスミン]](plasmin)をトロンビン様プロテアーゼは、血液凝固線溶系および炎症反応での役割が古くからよく知られている。その他、[[wikipedia:ja:トリプシン|トリプシン]]様プロテアーゼは食物消化の機能が最初に明らかにされた。しかし最近、脳内においてセリンプロテアーゼが、神経系の発達、維持、[[可塑性]]、疾患等に重要な役割を果たしていることが明らかとなって注目されるようになって来た。


&nbsp;
=== トロンビン  ===


=== プラスミン(plasmin) ===
 [[血液脳関門]]が損なわれる病態においてトロンビン(thrombin)は、脳実質内に入る他、脳内においても合成されることが知られる。従って、病態のみならず、正常脳においても何らかの役割を果たすことが示唆されている。[[初代培養|培養神経細胞]]や[[神経芽細胞腫]]細胞にトロンビンを投与すると[[神経突起]]伸長を阻害する。高濃度のトロンビンで処理すると、[[神経細胞]]と[[アストロサイト]]の両方で[[アポトーシス]]が誘導される。一方、トロンビンは神経可塑性にも関係する。海馬スライスにトロンビンをバスアプライすると、[[NMDA型グルタミン酸受容体]]電流が増強される。短時間のトロンビン暴露はゆっくりとした長続きする[[フィールド後シナプス電位]](fEPSP)を誘導する<ref name="ref1"><pubmed> 21782155 </pubmed></ref><ref name="ref3"><pubmed>21893397</pubmed></ref> 。


  プラスミノーゲンはtPAによって切断されて幅広い特異性をもつプラスミンになる。このtPA-プラスミンカスケードは神経可塑性に関わっている。プラスミン活性はLTPのいくつかの形に重要であることが示されてきている。例えば、プラスミンの投与時に[[テタナス刺激]]を同時に行うとLTPが増強された。プラスミンによるproBDNFから成熟BDNFへの活性化はL-LTPの発現に重要であることが明らかとなっている。動物個体による行動研究から、[[側坐核]]へのプラスミンの微量注入の結果、モルヒネ依存性の[[ドーパミン]]放出が増強され、マウスの過剰運動など薬物依存の症状が見られた。ここでは、プラスミンによるprotease-activated receptor1(PAR1)の活性化を介することが示されている。
=== 組織プラスミノーゲンアクチベーター  ===


=== ニューロトリプシン(Neurotrypsin)  ===
[[Image:図tPA2.jpg|thumb|300px|<b>図1.tPAのレセプターを介したシグナル伝達経路</b><br />参考:中枢神経系におけるtPAの役割 永井信夫 血栓止血誌20(1)18~22 2009]]


 1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンは[[プレシナプス]]終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている。 [[Image:1NPM.jpg|thumb|250px|<b>図2.ニューロプシンの立体構造</b><br />(日本蛋白質構造データバンク (PDBj))]]
 組織プラスミノーゲンアクチベーター(tissue plasminogen activator; tPA)は神経細胞、[[グリア細胞]]、[[wikipedia:ja:上皮細胞|上皮細胞]]によって合成分泌され、[[海馬]]など様々な脳領域に高発現している。多くの研究によってtPAは[[シナプス]]機能を修飾することが示されてきた。tPAの神経機能修飾作用としてタンパク質分解活性依存的なものと非依存的なものの2種類あることが知られている。tPAのタンパク質分解活性は[[GluN1]]サブユニットの切断を介してNMDAシグナルを増強する。一方、tPAはNMDA受容体GluN2Bサブユニットと結合して、その[[リン酸化]]を促進する。この結果[[EPK|ERK]]/[[MAPK]]経路の活性化を引き起こす。さらに、tPAは[[wikipedia:low-density lipoprotein receptor related protein|low-density lipoprotein receptor related protein]](LRP)と結合してNMDAシグナルに間接的に影響を与える可能性がある。その他tPAは[[wikipedia:ja:アネキシンA2|アネキシンA2]]と結合して[[ミクログリア]]の活性化を行うことが示唆されている。これらの経路を通じてtPAは神経可塑性の調節に深く関わる(図1参照)。海馬[[スライス]]において、tPA活性を阻害するかあるいはtPA[[遺伝子欠損マウス]]を用いると[[Late phase long-term potentiation]](L-LTP)が阻害される。tPA欠損マウスは[[能動的回避反応]]と[[ステップダウン型回避試験]]の成績の低下や新規空間と物体への反応の欠如、[[文脈付恐怖条件づけ]]のすくみの低下、[[小脳]]依存的な[[運動学習]]タスクの獲得の低下など学習タスクで障害を示した。<ref name="ref1" /> <ref name="ref3" />


=== ニューロプシン(Neuropsin) ===
=== プラスミン ===


&nbsp; ニューロプシンはトリプシン様セリンプロテアーゼとして1995年に脳で同定された(図2,3)。脳において、ニューロプシンは海馬CA1-3の錐体細胞と外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1]]CAMおよび[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、NMDA受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断され一方、扁桃体においてEphB2-NMDA受容体結合を阻害することからNMDA受容体の活性化を導き、不安関連行動を増強させる。 
 プラスミノーゲンはtPAによって切断されて幅広い特異性をもつプラスミン(plasmin)になる。このtPA-プラスミンカスケードは神経可塑性に関わっている。プラスミン活性はLTPのいくつかの形に重要であることが示されてきている。例えば、プラスミンの投与時に[[テタナス刺激]]を同時に行うとLTPが増強された。プラスミンによる[[ProBDNF]]から成熟[[BDNF]]への活性化はL-LTPの発現に重要であることが明らかとなっている。動物個体による行動研究から、[[側坐核]]へのプラスミンの微量注入の結果、[[モルヒネ]]依存性の[[ドーパミン]]放出が増強され、マウスの過剰運動など薬物依存の症状が見られた。ここでは、プラスミンによるprotease-activated receptor1(PAR1)の活性化を介することが示されている<ref name="ref1" /> 。


 ニューロプシンノックアウトマウスはE-LTPの障害と一致してモリス水迷路とY字迷路での海馬依存的な学習障害を示した。 [[Image:NP catalytic domainのコピー.jpg|thumb|133px|<b>図3.ニューロプシンの活性中心</b><br />Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]
=== ニューロトリプシン  ===


<br>
 ニューロトリプシン(Neurotrypsin)とは1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫[[電子顕微鏡]]観察と培養[[マウス]]海馬神経細胞を用いた[[共焦点顕微鏡]]による研究からニューロトリプシンは[[シナプス前終末]]に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。[[wikipedia:ja:アルジェリア|アルジェリア]]の2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が[[wikipedia:ja:常染色体劣性遺伝|常染色体劣性遺伝]]によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている<ref name="ref1" />。 [[Image:1NPM.jpg|thumb|250px|<b>図2.ニューロプシンの立体構造</b><br />(日本蛋白質構造データバンク (PDBj))]]


== メタロ(金属)プロテアーゼ(メトジンシンプロテアーゼファミリー(Metzincin protease family)) ==
=== ニューロプシン ===


&nbsp; マトリックスメタロプロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼファミリーと呼ばれている。[[細胞外マトリックス]]蛋白質(例えば、タイプⅠ、Ⅳ [[コラーゲン]][[ラミニン]]、フィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である(図4,5)。
 ニューロプシン(Neuropsin)はトリプシン様セリンプロテアーゼとして1995年に脳で同定された(図2,3)。脳において、ニューロプシンは海馬[[CA1-3]]の[[錐体細胞]]と[[外側扁桃体]]の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、[[Early-phase LTP]](E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1|L1CAM]]および[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、[[NMDA型グルタミン酸受容体]]依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断される一方、扁桃体においてEphB2-NMDA型グルタミン酸受容体結合を阻害することからNMDA型グルタミン酸受容体の活性化を導き、[[不安関連行動]]を増強させる。 


=== マトリックスメタロプロテアーゼ(MMP)  ===
 ニューロプシンノックアウトマウスはE-LTPの障害と一致して[[モリス水迷路]]と[[Y字迷路]]での海馬依存的な学習障害を示した<ref name="ref1" /><ref name="ref3" />。 [[Image:NP catalytic domainのコピー.jpg|thumb|133px|<b>図3.ニューロプシンの活性中心</b><br />Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]


[[Image:HMMP8.jpg|thumb|300px|<b>図4.human neutrophil collagenase(MMP-8)の立体構造と活性ドメイン</b><br />(日本.蛋白質構造データバンク (PDBj))<br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]] MMPはヒトで24種類、マウスで23種類の遺伝子がコードされており、分泌型と膜結合型のメンバーを含み、それらがドメイン構造に従って,コラゲナーゼ,ストロメライシン,ゼラチナーゼと膜型 MMP(MT-MMP)の4つの主なサブグループに分けられている。最近のニューロンとアストロサイトでの報告によると多くのMMPは小胞で分泌されるためのシグナルペプチドを持ち、細胞外で機能すると考えられる。しかしながら、神経細胞とグリア細胞の核でのMMP-2,9,13の存在から、細胞内でのMMPの機能も報告されている。膜結合型のMT-MMPは、フューリン(furin)あるいはプラスミンによって、ゴルジネットワーク内において、つまり細胞内で活性化され、細胞外にある間は活性があると考えられる。MMPの発現は、多くの成長因子、サイトカイン、ケモカインに[[Image:Catalytic domain.jpg|thumb|92px|<b>図5.活性中心</b><br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]]よって転写レベルで制御されており、また一方転写後あるいはエピジェネティクス修飾によっても調節を受けている。MMPは[[神経生理学]]に関連する細胞外マトリックスタンパク質の分解や、成長因子およびそのレセプター、あるいはサイトカインの活性化、細胞外マトリックス受容体の分解も行う。MMPのうち、MMP-2、3、9は脳内でもっとも豊富に発現している。
== メタロプロテアーゼ  ==


 MMP-9は、スパインに発現するβジストログリカンとintracellular adhesion molecule(ICAM)5を基質とし、神経可塑性に関わることが報告されている。ICAM5は未成熟な[[フィロポディア]]に多く発現し、切断を受けることでスパインの成熟が進む。MMP-9によってICAM5は切断され、そのN末断片がインテグリンシグナルを介してコフィリン(cofilin)のリン酸化を誘導し、アクチンリモデリングによりスパインの拡大が引き起こされると考えられている。海馬スライスにおいて、MMP-9活性を阻害するか、あるいはMMP-9遺伝子欠損マウスを用いるとL-LTPが阻害される。MMP-9 欠損マウスでは、文脈的恐怖条件付けの行動実験の結果、海馬依存的な学習が阻害され、扁桃体依存的な学習には影響が見られなかった。
&nbsp; マトリックスメタロ(金属)プロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼ(Metzincin protease family)ファミリーと呼ばれている。[[細胞外マトリックス]]タンパク質(例えば、タイプⅠ、Ⅳ [[wikipedia:ja:コラーゲン|コラーゲン]]、[[ラミニン]]、[[フィブロネクチン]]等)を切断する。活性部位のメチオニン残基(Met)および[[wikipedia:ja:亜鉛|亜鉛]]イオン(zinc ion)がペプチドの切断に重要である(図4、5)。


&nbsp;
=== マトリックスメタロプロテアーゼ  ===


=== A disintegrin and metalloproteinase(ADAM) ===
[[Image:HMMP8.jpg|thumb|300px|<b>図4.human neutrophil collagenase(MMP-8)の立体構造と活性ドメイン</b><br />(日本.蛋白質構造データバンク (PDBj))<br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]]


 ADAMは動物の受精にかかわることで注目された。ヒトに21個、マウスに37個あるADAM遺伝子のうち7個が精巣に発現している。一方、ADAMは神経発生と機能に重要な役割をはたすことも明らかとなってきた。ADAMと ADAMT<br>S(ADAM proteases with thrombospondin motif(後述))はディスインテグリン様ドメインをもち、このドメインによってインテグリンと結合する。ADAM15を除くADAMは古典的なRGDインテグリン結合モチーフをもたず、(D/E)ECD モチーフを持ち、このモチーフがインテグリン結合特異性に貢献し、細胞接着に関係する。逆に、ADAMとADAMTSのシステインリッチドメインはシンデカン、ファイブロネクチン、ほかのADAMとの結合を介して細胞接着を促進する。多くのADAM(ADAM-10とADAM-17を除いて)は、膜貫通ドメインに近接する上皮成長因子(EGF)likeドメインをもつ。ADAMの細胞内ドメインは、様々な長さを持ち、シグナル伝達に関与すると考えられている。ADAMの多くが神経系に発現している。しかしながら、ADAM-22欠損マウスとADAM-23欠損マウスはたとえば、運動失調、歩行困難、震えなどのフェノタイプを示す。ADAM-10 欠損マウスとADAM-17欠損マウスは胎生、周産期致死となる。
 マトリックスメタロプロテアーゼ (MMP)は[[wikipedia:ja:ヒト|ヒト]]で24種類、マウスで23種類の遺伝子がコードされており、分泌型と膜結合型のメンバーを含み、それらがドメイン構造に従って、[[wikipedia:ja:コラゲナーゼ|コラゲナーゼ]]、[[wikipedia:ja:ストロメライシン|ストロメライシン]]、[[wikipedia:ja:ゼラチナーゼ|ゼラチナーゼ]]と膜型 MMP(MT-MMP)の4つの主なサブグループに分けられている。最近のニューロンとアストロサイトでの報告によると多くのMMPは小胞で分泌されるためのシグナルペプチドを持ち、細胞外で機能すると考えられる。しかしながら、神経細胞とグリア細胞の核でのMMP-2,9,13の存在から、細胞内でのMMPの機能も報告されている。膜結合型のMT-MMPは、[[フューリン]](furin)あるいはプラスミンによって、[[ゴルジ]]ネットワーク内において、つまり細胞内で活性化され、細胞外にある間は活性があると考えられる。MMPの発現は、多くの[[成長因子]]、[[サイトカイン]]、[[ケモカイン]]に[[Image:Catalytic domain.jpg|thumb|92px|<b>図5.活性中心</b><br />ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。]]よって[[wikipedia:ja:転写|転写]]レベルで制御されており、また一方転写後あるいは[[wikipedia:ja:エピジェネティクス修飾|エピジェネティクス修飾]]によっても調節を受けている。MMPは神経生理学に関連する細胞外マトリックスタンパク質の分解や、成長因子およびその受容体、あるいはサイトカインの活性化、細胞外マトリックス受容体の分解も行う。MMPのうち、MMP-2、3、9は脳内でもっとも豊富に発現している<ref name="ref2"><pubmed>21084591</pubmed></ref>。


=== ADAM proteases with thrombospondin motif(ADAMTS) ===
 MMP-9は、スパインに発現するβ[[ジストログリカン]]と[[Intracellular adhesion molecule]](ICAM)5を基質とし、神経可塑性に関わることが報告されている。ICAM5は未成熟な[[フィロポディア]]に多く発現し、切断を受けることでスパインの成熟が進む。MMP-9によってICAM5は切断され、そのN末断片が[[インテグリンシグナル]]を介して[[コフィリン]](cofilin)のリン酸化を誘導し、[[アクチン]]リモデリングによりスパインの拡大が引き起こされると考えられている。海馬スライスにおいて、MMP-9活性を阻害するか、あるいはMMP-9遺伝子欠損マウスを用いるとL-LTPが阻害される。MMP-9 欠損マウスでは、文脈的恐怖条件付けの行動実験の結果、海馬依存的な学習が阻害され、扁桃体依存的な学習には影響が見られなかった。


 トランスポゾンタイプ1(thrombospondin type1)様リピートをもつメタロプロテアーゼである。ADAMと同様に、ADAMTSは細胞内で活性化され活性型で分泌される。保存されたトランスポゾンタイプ1様リピートはプロテオグリカン上の硫酸化プリコサミノグリカンの結合ドメインとして機能すると考えられている。ADAMTS-1、4,5,8,9と15はアグリカンを切断すると報告されている。ADAMTS-4と5は、アグリカンの他、ヒアルロナン結合レクチカンプロテオグリカンの[[バーシカン]]と[[ブレビカン]]も切断し、ブレビカン切断は神経系の生理、特に神経可塑性と[[神経謬腫侵襲]]に関連があるとされる。ADAMTS-1発現はアルツハイマー病と[[ダウン症]]で増加しADAMTS-1、4、8と9は[[脳虚血]]で上昇することから[[神経変性疾患]]に関係すると考えられている。ADAMTS-4発現は実験的自己免疫性脳脊髄炎で減少し、また[[多発性硬化症]]の白質で上昇するというやや相違した結果も得られている。その阻害物質TIMP-3はこれにおいて逆相関が見られている。
=== A disintegrin and metalloproteinase  ===


== アスパラギン酸プロテアーゼ  ==
 A disintegrin and metalloproteinase (ADAM)は動物の[[wikipedia:ja:受精|受精]]にかかわることで注目された。ヒトに21個、マウスに37個あるADAM遺伝子のうち7個が精巣に発現している。一方、ADAMは神経発生と機能に重要な役割をはたすことも明らかとなってきた。ADAMと ADAMTS (ADAM proteases with thrombospondin motif(後述)は[[ディスインテグリン]]様ドメインをもち、このドメインによってインテグリンと結合する。ADAM15を除くADAMは古典的なRGDインテグリン結合モチーフをもたず、(D/E)ECD モチーフを持ち、このモチーフがインテグリン結合特異性に貢献し、細胞接着に関係する。逆に、ADAMとADAMTSのシステインリッチドメインは[[シンデカン]]、[[フィブロネクチン]]、ほかのADAMとの結合を介して細胞接着を促進する。多くのADAM(ADAM-10とADAM-17を除いて)は、膜貫通ドメインに近接する[[上皮成長因子]](EGF)likeドメインをもつ。ADAMの細胞内ドメインは、様々な長さを持ち、シグナル伝達に関与すると考えられている。ADAMの多くが神経系に発現している。しかしながら、ADAM-22欠損マウスとADAM-23欠損マウスはたとえば、[[運動失調]]、[[歩行困難]]、震えなどの表現型を示す。ADAM-10 欠損マウスとADAM-17欠損マウスは胎生、周産期致死となる<ref name="ref3" /><ref name="ref2" />。


=== BACE1 ===
=== ADAM proteases with thrombospondin motif ===


 [[アルツハイマー病]]の主原因である(アミロイドベータ)Aβ生産に関わるβセクレターゼとして単離されてきた。Aβは膜貫通タンパク質であるamyloid precursor protein(APP)をβ-セクレターゼが細胞外の切断に関わり、γ‐セクレターゼが膜貫通領域の細胞質側で切断することから産生される。その結果、患者の[[老人班]]が形成されることになる。
  ADAM proteases with thrombospondin motif(ADAMTS) とはトランスポゾンタイプ1(thrombospondin type1)様リピートをもつメタロプロテアーゼである。ADAMと同様に、ADAMTSは細胞内で活性化され活性型で分泌される。保存されたトランスポゾンタイプ1様リピートはプロテオグリカン上の硫酸化プリコサミノグリカンの結合ドメインとして機能すると考えられている。ADAMTS-1、4、5、8、9と15は[[アグリカン]]を切断すると報告されている。ADAMTS-4と5は、アグリカンの他、[[ヒアルロナン]]結合[[レクチカン]][[プロテオグリカン]]の[[バーシカン]]と[[ブレビカン]]も切断し、ブレビカン切断は神経系の生理、特に神経可塑性と[[神経膠腫]]浸潤に関連があるとされる。ADAMTS-1発現は[[アルツハイマー病]]と[[ダウン症]]で増加しADAMTS-1、4、8と9は[[脳虚血]]で上昇することから[[神経変性疾患]]に関係すると考えられている。ADAMTS-4発現は実験的[[自己免疫性脳脊髄炎]]で減少し、また[[多発性硬化症]]の白質で上昇するというやや相違した結果も得られている。その阻害物質TIMP-3はこれにおいて逆相関が見られている<ref name="ref2" />。


== システインプロテアーゼ ==
== アスパラギン酸プロテアーゼ ==


=== カルパイン(Calpain) ===
=== BACE1 ===


 神経細胞死に関わる細胞内プロテアーゼである。
 アルツハイマー病の主原因である([[アミロイドベータ]])Aβ生産に関わる[[β-セクレターゼ]]として単離されてきた。Aβは膜貫通タンパク質であるamyloid precursor protein(APP)をβ-セクレターゼが細胞外の切断に関わり、[[γ‐セクレターゼ]]が膜貫通領域の細胞質側で切断することから産生される。その結果、患者の[[老人斑]]が形成されることになる。


== 関連項目  ==
== 関連項目  ==
78行目: 148行目:
== 参考文献  ==
== 参考文献  ==


1.Antoine G. Almonte, J. David Sweatt <br>Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synapticfunction and behavior <br>B R A I N R E S E A R C H 1 4 0 7 ( 2 0 1 1 ) 1 0 7 – 1 2 2 [[http://www.ncbi.nlm.nih.gov/pubmed/21782155| PubMed:21782155 ]]
<references />
 
2.Santiago Rivera, Michel Khrestchatisky, Leszek Kaczmarek, Gary A. Rosenberg, and Diane M. Jaworski<br>Metzincin Proteases and Their Inhibitors: Foes or Friends in Nervous System Physiology? The Journal of Neuroscience, 2010 • 30(46):15337–15357 • 15337 [[http://www.ncbi.nlm.nih.gov/pubmed/21084591| PubMed:21084591 ]]
 
3. Katarzyna Lukasiuk, Grzegorz M. Wilczynski, Leszek Kaczmarek<br>Extracellular proteases in epilepsy Epilepsy Research (2011) 96, 191—206 [[http://www.ncbi.nlm.nih.gov/pubmed/21893397| PubMed:21893397 ]]
 
<br>(執筆者:鈴木春満 担当編集委員:河西春郎)

2020年11月21日 (土) 10:11時点における最新版

鈴木 春満
奈良先端大学
DOI:10.14931/bsd.1636 原稿受付日:2012年5月30日 原稿完成日:2012年8月11日
担当編集委員:河西 春郎(東京大学 大学院医学系研究科)

英:extracellular protease, extracellular proteinase

 タンパク質ペプチドを形成するペプチド結合を切断する酵素をプロテアーゼ(protease)と総称する。プロテアーゼには細胞外作用型と細胞内作用型の2種類があり作用機序そのものは変わらないが、シグナル配列を持ち細胞外へ分泌されるかどうかによって機能は大きく異なる。ここでは細胞外作用型つまり細胞外プロテアーゼについて概説する。

細胞外プロテアーゼとは

 タンパク質、ペプチドを形成する基本的な結合(ペプチド結合)を切断する酵素をプロテアーゼ(protease)と総称する。プロテイネース(proteinase)と呼ぶこともありこちらの方が正式名称であるが、日本語でも英語でもプロテアーゼの方が一般的に使われている。ペプチド結合を切断するのでペプチデースと呼ぶこともある。たとえばプロテアーゼ活性を測定するためオリゴペプチド合成基質を用いて測定するとプロテアーゼ活性であっても、正確にはペプチデース活性と記載する。プロテアーゼには細胞外作用型と細胞内作用型の2種類があり作用機序そのものは変わらないが、シグナル配列を持ち細胞外へ分泌されるかどうかによって機能は大きく異なる。ここでは細胞外作用型つまり細胞外プロテアーゼについて概説する。切断されるタンパク質、もしくはペプチドはプロテアーゼによって抱え込まれ、その活性部位で切断される。

 プロテアーゼは触媒部位を形成するアミノ酸によっていくつかのタイプに分類される。アミノ酸のセリンを活性部位にもつものはセリンプロテアーゼと呼び、同様に、アスパラギン酸プロテアーゼおよびメタロ(金属)プロテアーゼなどと呼ぶ。更に、詳細な分類はプロテアーゼの結合サイトやハサミの部分を活性部位、及び、ターゲットとなるタンパク質の基質特異性によって行う(以下参照)。

表 細胞外プロテアーゼの基質と機能発現
プロテアーゼ 基質(候補) プロテアーゼの発現調節に関わる機構 プロテアーゼに関係すると考えられている機能
Thrombin PAR 発達、虚血、損傷、アルツハイマー病 回復(低濃度)、神経変性、細胞死(高濃度)
TPA プラスミノーゲン、GluR1サブユニット、NR1 電気生理刺激、興奮毒性、抑制ストレス、運動学習、浸透ストレス 神経突起伸長、シナプス形成、L-LTP
Plasmin ラミニン、proBDNF、NR2A、PAR1 tPA活動に依存 L-LTP
Neurotrypsin アグリン 神経活動、発達 シナプス形成、非症候群精神遅滞
Neuropsin L1, EphB2, ニューレグリン1 神経活動、電気生理刺激、豊かな環境(enviromental enrichment)、ストレス E-LTP、ワーキングメモリー、情動記憶
MMP-9 コラーゲン、ゼラチン、βジストログリカン、ICAM-5 神経活動、電気生理刺激 L-LTP、シナプス形成
ADAM-10, 17 アミロイドβ前駆体蛋白質 (APP)、NotchDelta アルツハイマー病、多発性硬化症 神経分化
ADAM-22, 23 活性ドメインなし 発達 運動、ミエリン形成
ADAMTS-1, 8, 9, 15 アグリカン アルツハイマー病(ADAMTS-1)、ダウン症(ADAMTS-1)、脳虚血(ADAMTS-1, 8, 9) 神経変性疾患
ADAMTS-4, 5 アグリカン、バーシカンブレビカン 脳虚血(ADAMTS-4) 神経可塑性、神経謬腫侵襲
BACE1 アミロイドβ前駆体蛋白質 (APP) アルツハイマー病 老人斑

セリンプロテアーゼ

 セリンプロテアーゼはセリン、ヒスチジン、アスパラギン酸の3つのアミノ酸によって活性中心が形成されることが特徴である(図3参照)。

 セリンプロテアーゼの一種、トロンビン組織プラスミノーゲンアクティベータ(tissue plasminogen activator;tPA)と プラスミン(plasmin)をトロンビン様プロテアーゼは、血液凝固線溶系および炎症反応での役割が古くからよく知られている。その他、トリプシン様プロテアーゼは食物消化の機能が最初に明らかにされた。しかし最近、脳内においてセリンプロテアーゼが、神経系の発達、維持、可塑性、疾患等に重要な役割を果たしていることが明らかとなって注目されるようになって来た。

トロンビン

 血液脳関門が損なわれる病態においてトロンビン(thrombin)は、脳実質内に入る他、脳内においても合成されることが知られる。従って、病態のみならず、正常脳においても何らかの役割を果たすことが示唆されている。培養神経細胞神経芽細胞腫細胞にトロンビンを投与すると神経突起伸長を阻害する。高濃度のトロンビンで処理すると、神経細胞アストロサイトの両方でアポトーシスが誘導される。一方、トロンビンは神経可塑性にも関係する。海馬スライスにトロンビンをバスアプライすると、NMDA型グルタミン酸受容体電流が増強される。短時間のトロンビン暴露はゆっくりとした長続きするフィールド後シナプス電位(fEPSP)を誘導する[1][2]

組織プラスミノーゲンアクチベーター

図1.tPAのレセプターを介したシグナル伝達経路
参考:中枢神経系におけるtPAの役割 永井信夫 血栓止血誌20(1)18~22 2009

 組織プラスミノーゲンアクチベーター(tissue plasminogen activator; tPA)は神経細胞、グリア細胞上皮細胞によって合成分泌され、海馬など様々な脳領域に高発現している。多くの研究によってtPAはシナプス機能を修飾することが示されてきた。tPAの神経機能修飾作用としてタンパク質分解活性依存的なものと非依存的なものの2種類あることが知られている。tPAのタンパク質分解活性はGluN1サブユニットの切断を介してNMDAシグナルを増強する。一方、tPAはNMDA受容体GluN2Bサブユニットと結合して、そのリン酸化を促進する。この結果ERK/MAPK経路の活性化を引き起こす。さらに、tPAはlow-density lipoprotein receptor related protein(LRP)と結合してNMDAシグナルに間接的に影響を与える可能性がある。その他tPAはアネキシンA2と結合してミクログリアの活性化を行うことが示唆されている。これらの経路を通じてtPAは神経可塑性の調節に深く関わる(図1参照)。海馬スライスにおいて、tPA活性を阻害するかあるいはtPA遺伝子欠損マウスを用いるとLate phase long-term potentiation(L-LTP)が阻害される。tPA欠損マウスは能動的回避反応ステップダウン型回避試験の成績の低下や新規空間と物体への反応の欠如、文脈付恐怖条件づけのすくみの低下、小脳依存的な運動学習タスクの獲得の低下など学習タスクで障害を示した。[1] [2]

プラスミン

 プラスミノーゲンはtPAによって切断されて幅広い特異性をもつプラスミン(plasmin)になる。このtPA-プラスミンカスケードは神経可塑性に関わっている。プラスミン活性はLTPのいくつかの形に重要であることが示されてきている。例えば、プラスミンの投与時にテタナス刺激を同時に行うとLTPが増強された。プラスミンによるProBDNFから成熟BDNFへの活性化はL-LTPの発現に重要であることが明らかとなっている。動物個体による行動研究から、側坐核へのプラスミンの微量注入の結果、モルヒネ依存性のドーパミン放出が増強され、マウスの過剰運動など薬物依存の症状が見られた。ここでは、プラスミンによるprotease-activated receptor1(PAR1)の活性化を介することが示されている[1]

ニューロトリプシン

 ニューロトリプシン(Neurotrypsin)とは1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と扁桃体に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンはシナプス前終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外プロテオリグリカンの一種アグリンを基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞でスパイン密度の減少が示された。臨床研究では、一部の精神遅滞の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている[1]

図2.ニューロプシンの立体構造
(日本蛋白質構造データバンク (PDBj))

ニューロプシン

 ニューロプシン(Neuropsin)はトリプシン様セリンプロテアーゼとして1995年に脳で同定された(図2,3)。脳において、ニューロプシンは海馬CA1-3錐体細胞外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流してシータ刺激を行うと、Early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子L1CAMおよびEphB2受容体が同定されており、ニューロプシンによるL1CAMの分解は、NMDA型グルタミン酸受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断される一方、扁桃体においてEphB2-NMDA型グルタミン酸受容体結合を阻害することからNMDA型グルタミン酸受容体の活性化を導き、不安関連行動を増強させる。 

 ニューロプシンノックアウトマウスはE-LTPの障害と一致してモリス水迷路Y字迷路での海馬依存的な学習障害を示した[1][2]

図3.ニューロプシンの活性中心
Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4

メタロプロテアーゼ

  マトリックスメタロ(金属)プロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼ(Metzincin protease family)ファミリーと呼ばれている。細胞外マトリックスタンパク質(例えば、タイプⅠ、Ⅳ コラーゲンラミニンフィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である(図4、5)。

マトリックスメタロプロテアーゼ

図4.human neutrophil collagenase(MMP-8)の立体構造と活性ドメイン
(日本.蛋白質構造データバンク (PDBj))
ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。

 マトリックスメタロプロテアーゼ (MMP)はヒトで24種類、マウスで23種類の遺伝子がコードされており、分泌型と膜結合型のメンバーを含み、それらがドメイン構造に従って、コラゲナーゼストロメライシンゼラチナーゼと膜型 MMP(MT-MMP)の4つの主なサブグループに分けられている。最近のニューロンとアストロサイトでの報告によると多くのMMPは小胞で分泌されるためのシグナルペプチドを持ち、細胞外で機能すると考えられる。しかしながら、神経細胞とグリア細胞の核でのMMP-2,9,13の存在から、細胞内でのMMPの機能も報告されている。膜結合型のMT-MMPは、フューリン(furin)あるいはプラスミンによって、ゴルジネットワーク内において、つまり細胞内で活性化され、細胞外にある間は活性があると考えられる。MMPの発現は、多くの成長因子サイトカインケモカイン

図5.活性中心
ピンクの球体が亜鉛イオン、グレーの球体がカルシウムイオン。アミノ酸側鎖はヒスチジンを示している。

よって転写レベルで制御されており、また一方転写後あるいはエピジェネティクス修飾によっても調節を受けている。MMPは神経生理学に関連する細胞外マトリックスタンパク質の分解や、成長因子およびその受容体、あるいはサイトカインの活性化、細胞外マトリックス受容体の分解も行う。MMPのうち、MMP-2、3、9は脳内でもっとも豊富に発現している[3]

 MMP-9は、スパインに発現するβジストログリカンIntracellular adhesion molecule(ICAM)5を基質とし、神経可塑性に関わることが報告されている。ICAM5は未成熟なフィロポディアに多く発現し、切断を受けることでスパインの成熟が進む。MMP-9によってICAM5は切断され、そのN末断片がインテグリンシグナルを介してコフィリン(cofilin)のリン酸化を誘導し、アクチンリモデリングによりスパインの拡大が引き起こされると考えられている。海馬スライスにおいて、MMP-9活性を阻害するか、あるいはMMP-9遺伝子欠損マウスを用いるとL-LTPが阻害される。MMP-9 欠損マウスでは、文脈的恐怖条件付けの行動実験の結果、海馬依存的な学習が阻害され、扁桃体依存的な学習には影響が見られなかった。

A disintegrin and metalloproteinase

 A disintegrin and metalloproteinase (ADAM)は動物の受精にかかわることで注目された。ヒトに21個、マウスに37個あるADAM遺伝子のうち7個が精巣に発現している。一方、ADAMは神経発生と機能に重要な役割をはたすことも明らかとなってきた。ADAMと ADAMTS (ADAM proteases with thrombospondin motif(後述)はディスインテグリン様ドメインをもち、このドメインによってインテグリンと結合する。ADAM15を除くADAMは古典的なRGDインテグリン結合モチーフをもたず、(D/E)ECD モチーフを持ち、このモチーフがインテグリン結合特異性に貢献し、細胞接着に関係する。逆に、ADAMとADAMTSのシステインリッチドメインはシンデカンフィブロネクチン、ほかのADAMとの結合を介して細胞接着を促進する。多くのADAM(ADAM-10とADAM-17を除いて)は、膜貫通ドメインに近接する上皮成長因子(EGF)likeドメインをもつ。ADAMの細胞内ドメインは、様々な長さを持ち、シグナル伝達に関与すると考えられている。ADAMの多くが神経系に発現している。しかしながら、ADAM-22欠損マウスとADAM-23欠損マウスはたとえば、運動失調歩行困難、震えなどの表現型を示す。ADAM-10 欠損マウスとADAM-17欠損マウスは胎生、周産期致死となる[2][3]

ADAM proteases with thrombospondin motif

  ADAM proteases with thrombospondin motif(ADAMTS) とはトランスポゾンタイプ1(thrombospondin type1)様リピートをもつメタロプロテアーゼである。ADAMと同様に、ADAMTSは細胞内で活性化され活性型で分泌される。保存されたトランスポゾンタイプ1様リピートはプロテオグリカン上の硫酸化プリコサミノグリカンの結合ドメインとして機能すると考えられている。ADAMTS-1、4、5、8、9と15はアグリカンを切断すると報告されている。ADAMTS-4と5は、アグリカンの他、ヒアルロナン結合レクチカンプロテオグリカンバーシカンブレビカンも切断し、ブレビカン切断は神経系の生理、特に神経可塑性と神経膠腫浸潤に関連があるとされる。ADAMTS-1発現はアルツハイマー病ダウン症で増加しADAMTS-1、4、8と9は脳虚血で上昇することから神経変性疾患に関係すると考えられている。ADAMTS-4発現は実験的自己免疫性脳脊髄炎で減少し、また多発性硬化症の白質で上昇するというやや相違した結果も得られている。その阻害物質TIMP-3はこれにおいて逆相関が見られている[3]

アスパラギン酸プロテアーゼ

BACE1

 アルツハイマー病の主原因である(アミロイドベータ)Aβ生産に関わるβ-セクレターゼとして単離されてきた。Aβは膜貫通タンパク質であるamyloid precursor protein(APP)をβ-セクレターゼが細胞外の切断に関わり、γ‐セクレターゼが膜貫通領域の細胞質側で切断することから産生される。その結果、患者の老人斑が形成されることになる。

関連項目

参考文献

  1. 1.0 1.1 1.2 1.3 1.4 Almonte, A.G., & Sweatt, J.D. (2011).
    Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain research, 1407, 107-22. [PubMed:21782155] [PMC] [WorldCat] [DOI]
  2. 2.0 2.1 2.2 2.3 Lukasiuk, K., Wilczynski, G.M., & Kaczmarek, L. (2011).
    Extracellular proteases in epilepsy. Epilepsy research, 96(3), 191-206. [PubMed:21893397] [WorldCat] [DOI]
  3. 3.0 3.1 3.2 Rivera, S., Khrestchatisky, M., Kaczmarek, L., Rosenberg, G.A., & Jaworski, D.M. (2010).
    Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(46), 15337-57. [PubMed:21084591] [PMC] [WorldCat] [DOI]