66
回編集
Hanakohayashi (トーク | 投稿記録) 細 (→成長円錐の伸長) |
Hanakohayashi (トーク | 投稿記録) 細編集の要約なし |
||
108行目: | 108行目: | ||
==β–カテニン、γ–カテニン== | ==β–カテニン、γ–カテニン== | ||
β–カテニンとγ– | β–カテニンとγ–カテニン(プラコグロビンとも呼ばれる)がこのグループに属する。ヒトにおいて両者は高い相同性(76%以上の相同性)をもつ。また、ショウジョウバエのアルマジロとも高い相同性をもつ。 | ||
===構造=== | ===構造=== | ||
β–カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端を除いた大部分を占める。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。β–カテニンタンパクの立体構造はアルマジロ反復配列の領域だけでなく、ゼブラフィッシュにおいて全長で近年、解かれた<ref name=ref_><pubmed> 18334222 </pubmed></ref>。E–カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、β–カテニンのアルマジロ配列のほぼ全体に結合する<ref><pubmed> 15112230 </pubmed></ref>。α–カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、転写因子であるTCF/LEFに結合することで、Wntシグナル伝達における転写制御に、また、APC、Axinもその反復配列へ結合することで、β–カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域とGSK3βとの結合も存在し、β–カテニンの分解促進に重要であると考えられている。 | |||
プラコグロビンはβ–カテニンの機能を相補しうるが、特徴としてそのN末端部分を介してデスモソームカドヘリンの細胞質部分に結合する。プラコグロビンもβ–カテニンと同様にその中央部分にアルマジロ反復配列をもち、その領域はデスモプラーキンと呼ばれる中間径フィラメント結合タンパクとの結合サイトをもつ。このデスモプラーキンとの結合はデスモソームと中間径線維との連結役として機能していると考えられている<ref><pubmed> 17854763 </pubmed></ref>。 | |||
===発現=== | ===発現=== | ||
UniGeneのESTプロファイルによると、β–カテニンは一般的に体全身の多くの組織において発現が認められているが、脂肪組織や副甲状腺、扁桃腺といって一部の組織では発現が確認されていない。細胞レベルにおいては、β–カテニンは、α–カテニンと同様、細胞質タンパクであるため、細胞質に一様な局在も示すが、カドヘリンを介した膜への局在が主である。Wntシグナルの活性化状態では、β–カテニンは核への局在が見られるようになる。 | |||
プラコグロビン(γ–カテニン)も、β–カテニンと同様に多くの組織では発現が確認されているが、副腎や、耳、唾液腺、脾臓、へその緒、血管といった一部の組織には発現が確認されていない。細胞レベルでは、デスモソームへの局在が顕著である。 | |||
===機能=== | ===機能=== | ||
β– | β–カテニンにはカドヘリン・カテニン複合体中のメンバーとしての細胞間接着への必須な役割と、Wnt/β–カテニンシグナルの転写制御因子としての役割とがある。 | ||
細胞間接着におけるβ–カテニンの役割は、カドヘリンとα–カテニンとの連結にある<ref><pubmed><pubmed> 22617422 </pubmed></ref>。α–カテニンの結合は生化学的に確認されており、E–カドヘリンとともにアドへレンス・ジャンクションに局在するという細胞レベルの知見からも支持されている<ref><pubmed> 15112230 </pubmed></ref>。F9細胞ではβ–カテニンをノックアウトしてもプラコグロビン(γ–カテニンとも呼ばれる)の発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンとα–カテニンとを融合したタンパク質を発現させれば、β–カテニンが存在しなくてもカドヘリンの機能は発揮される<ref><pubmed> 7929566 </pubmed></ref>。 これらは、細胞間接着においてプラコグロビンがβ–カテニンの機能を補完する役割を担っており、またβ–カテニンの機能は、α–カテニンをカドヘリンに結合させることであることを示している。細胞接着においてプラコグロビンの特徴はデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパクであるプラモプラーキンの両方と同時に結合し、デスモソームの構造体として機能する点である。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、アドへレンス・ジャンクションとデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンのノックアウトマウスの心筋組織ではアドへレンス・ジャンクションの構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref><pubmed> 19262118 </pubmed></ref>。 | |||
β–カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質のβ–カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3βによりリン酸化され、それを標的としたユビキチン化により、プロテアソームによるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3βによるリン酸化が抑制され、β–カテニンは核内へ移行し、TCF/LEFと複合体を形成し、細胞周期関連因子や体軸決定因子などの標的遺伝子を活性化する<ref><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と可塑性や神経幹細胞の未分化状態の維持など多岐にわたる寄与が報告されている<ref><pubmed>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref> <ref><pubmed> 23377854 </pubmed></ref>。また、プロコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/β–カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプロコグロビンはβ–カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/β–カテニンシグナル伝達の制御を実現していると解釈できる。 | |||
==p120;–カテニン== | |||
p120–カテニンとδ–カテニンがこのグループに属する(p120–カテニンファミリーにはその他複数のタンパクがあるが、ここでは比較的研究歴史の長い2つのカテニンについてのみ紹介する。それ以外のタンパクについては総説<ref><pubmed> 15489912 </pubmed></ref>や<ref><pubmed> 17175391 </pubmed></ref>を参照していただきたい。)。(PSD-95やGRIPとも相互作用すると思います。これらの点についても御願い致します) | |||
===構造=== | |||
p120–カテニンファミリータンパクの中央領域に見られる10個のアルマジロ反復配列は、カドヘリンの細胞膜に近接した細胞質領域と結合する<ref><pubmed> 15489912 </pubmed></ref>。p120–カテニンのアルマジロ反復配列に隣接するN末端側の領域は、スレオニン残基のリン酸化サイトが複数存在している。そのさらに隣に位置するN末端にはcoild-coil配列が存在している。加えて、δ–カテニンは、そのC末領域にPDZタンパクとの結合領域を有す。その一例として、グルタミン酸受容体結合タンパクGRIPやシナプス後膜直下に形成されるシナプス後部肥厚(Postsynaptic density: PSD)に局在化するPSD–95などがそこに結合する<ref><pubmed> 22535893 </pubmed></ref>。 | |||
===発現=== | ===発現=== | ||
p120–カテニンは、多くの組織において強い発現が認められるが、他のカテニンと同様に扁桃腺やへその緒での発現は検出されていない。δ–カテニンは、神経系での強い発現が特徴である。上皮細胞では、p120–カテニンはアドへレンス・ジャンクションを含む、隣接する細胞に接触している細胞膜に濃縮する。δ–カテニンは、成熟した樹状突起のシナプスに強く観察されるが、脳組織の中でもその発現度合いは異なる。大脳皮質や、海馬、嗅球では強く発現するが、小脳や視床の発現はやや落ちる傾向がみられている(Allen Brain Atlas)。 | |||
===機能=== | ===機能=== | ||
====p120–カテニン==== | ====p120–カテニン==== | ||
p120–カテニンは、カドヘリンとの結合を介してカドヘリンのエンドサイトーシスを 抑制し、細胞膜上のカドヘリン量を維持する。p120–カテニンのチロシンリン酸化はp120–カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120–カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120–カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref><pubmed> 20371349 </pubmed></ref> <ref><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない大腸癌由来の細胞株を用いた解析からは、p120–カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref21><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は悪性腫瘍組織でみられる特徴の一つあるが<ref><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120–カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref ><pubmed> 12492499 </pubmed></ref>。また、p120–カテニンは細胞膜直下のアクチン線維動態も制御している。p120–カテニンはアクチン細胞骨格動態の主要な制御因子である低分子量Gタンパク質RhoAと結合し、RhoAの活性化を抑制し、一方で糸状仮足や葉状仮足の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質RacやCdc42を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref><pubmed>17194753</pubmed></ref>。細胞質におけるRhoAとの結合はp120–カテニンのリン酸化に依存している<ref><pubmed>17194753</pubmed></ref>が、先に述べたように、p120–カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120–カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。ラット海馬由来の培養神経細胞においても、上述したp120–カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、神経樹状突起伸長の促進やシナプス可塑性の適切な制御に寄与している<ref ><pubmed> 17936606 </pubmed></ref>。 | |||
p120–カテニンは、PLEKHA7タンパク質、そして微小管マイナス端に局在するNezhaタンパク質を介してアドへレンス・ジャンクションへの微小管を繫ぎとめることが示されている<ref><pubmed> 19041755 </pubmed></ref>。また、アフリカツメガエル胚では、p120–カテニンが核内で転写抑制因子Kaisoと結合し、脊椎動物の形態形成に必須なWnt/PCPシグナル伝達系(Wnt/β–カテニンシグナル伝達系とは違うWntシグナル)のxWnt11の遺伝子発現を活性化することが示された<ref><pubmed> 15543138 </pubmed></ref>。しかし、p120–カテニンの核移行の分子機構(核移行の生理的な場合のトリガーの同定やp120–カテニンのリン酸化との関連など)やxWnt11以外の標的の遺伝子群についてはわかっていない点が多い<ref><pubmed> 22583808 </pubmed></ref>。 | |||
====δ–カテニン==== | |||
マウスの脳組織における免疫沈降実験から、δ–カテニンはN–カドヘリンとβ–カテニンと結合することが確認され、樹状突起のシナプスに強く観察される。シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref ><pubmed> 9971746 </pubmed></ref>。また、ラット神経組織の初代培養細胞では、δ–カテニンはGSK3β、β–カテニンと複合体を形成し、β–カテニンの分解を促進させる機能も有する<ref><pubmed> 20623542 </pubmed></ref>。 また、シナプス後方細胞では、グルタミン酸受容体結合タンパクGRIPやシナプスシナプス後部肥厚部分に局在化するPDS–95との結合が報告されているが、成熟したシナプスにおいてのみδ–カテニンはそれらと局在化する。一方で、シナプスの形成初期では、δ–カテニンの代わりにp120–カテニンがシナプス構造部分に局在する。このようにシナプスの形成過程の中で時期特異的に異なるカテニンが働いて、シグナル伝達の制御をしうる成熟したシナプスが構築されると考えられる<ref><pubmed> 15752981 </pubmed></ref>。 | |||
==脳におけるカテニンの機能== | ==脳におけるカテニンの機能== | ||
152行目: | 157行目: | ||
==疾患との関わり== | ==疾患との関わり== | ||
(他に特記する事があればご指摘下さい) | (他に特記する事があればご指摘下さい) | ||
もともと、δ– | もともと、δ–カテニンは家族性アルツハイマー病の原因遺伝子であるプレセニリン1の相互作用因子の解析から同定された<ref><pubmed> 9172160 </pubmed></ref>。染色体上のδ–カテニン遺伝子座を含む領域の欠損は、精神発達遅滞を起こすヒト遺伝病の一つであるネコ鳴き症候群患者に多くみられ、その後のδ–カテニンのノックアウトマウスの解析から、δ–カテニンはその症候群でみられる精神発達遅滞との関連が示唆された。そのノックアウトマウスでは、視覚からの刺激に対する視覚野の応答に障害がみられ、海馬の短期増強と長期増強の異常を示す。このノックアウトマウスの発生期のシナプス形成には異常はみられず、生存可能であるが、10週齢になると、大脳皮質のシナプスの密度の減少やシナプスの維持の欠落が見られるようになる。その分子機構はまだ不明であるが、δ–カテニンは、シナプスのスパイン構造の維持で機能することで、正常な認知機能やそれに繋がりうる精神発達に寄与すると示唆されている<ref><pubmed> 19403811 </pubmed></ref> 。 | ||
また、OMIMのデータベース上の情報によると、小頭症や精神遅滞、痙攣をもつ患者において、β–カテニン遺伝子座のヘテロ欠損変異が見つかっている。 | |||
カテニン全般的には、神経以外の組織における疾患よりもガンとの関連性がよく議論されている。以下は、OMINにある情報をいくつか挙げている。結腸直腸ガンや黒色腫ガンなどの患者の組織ではβ–カテニンの遺伝子座にいくつかの異なる変異が見つかっている。これらの変異は、APCやGSK3βによるβ–カテニンのリン酸化を介したβ–カテニン/Lefによる遺伝子発現の制御不全を引き起こし、細胞の異常な増殖、つまりはがん化へと繋がっているのではないかと推察されている。β–カテニンと疾患との関係は複数の報告があり、OMINにはここに挙げていない情報が掲載されているので、ご参照ください。第5染色体の欠損をもつ骨髄白血病患者からの細胞HL–60の解析から、αE–カテニン遺伝子座のメチル化とヒストン脱アセチル化により、その発現が抑制されないままになることがみられている。このαE–カテニンの発現が維持されたままの細胞では、細胞増殖の低下やアポトーシスによる細胞死が見られている。また、アフリカ系アメリカ人の乳がん患者においてもαE–カテニン遺伝子の中に変異が見つかっている。p120–カテニンは、多くのがん組織での発現が上昇していることが、UniGeneで示されているが、細胞膜にいるE–カドヘリンの量の減少を介して、もしくは細胞接着とは独立した機能を介して起こるのかはまだわかっていない<ref><pubmed> 15489912 </pubmed></ref>。 | |||
ヒトのプラコグロビン遺伝子、JUPの変異は、アミノ酸残基の挿入や欠損といった異なる様式の変異がいくつかの疾患患者で発見された。その一つは、掌蹠角皮症患者において、JUP遺伝子内でアミノ酸残基の欠損によるフレームシフトが起こっており、そのタンパクとして完成することができていないことが、ウェスタンブロットにより示されている。もうひとつの例として、催不整脈性の右室心筋症(皮膚への異常は伴わない)を患った人を含むドイツ人の家族において、プラコグロビン遺伝子の変異が見つけられた。その変異は、プラコグロビンのN末端から39番目の場所に余計にセリン残基が挿入されているものだと予想され、さらにこの変異がある病理組織の電子顕微鏡像では、デスモソームのサイズや数の減少が見つかった。プラコグロビン遺伝子内の挿入変異により、デスモソームの構造の制御がうまくいっていない可能性が示唆された他、Wntシグナルを介した経路の制御を阻害している可能性などが他のいくつかの研究結果をもって議論されている。 | |||
==関連項目== | ==関連項目== |
回編集