「エストロゲン」の版間の差分

ナビゲーションに移動 検索に移動
 
(同じ利用者による、間の7版が非表示)
40行目: 40行目:
 脳はエストロゲンを合成する一方、末梢で合成されたエストロゲンが脳に供給され得る。このような生体におけるエストロゲン、およびエストロゲン合成の基質であるテストステロンの動態は、川戸らの研究グループによって研究されている<ref name=Hojo2009><pubmed>19589866</pubmed></ref>。オスラットの海馬におけるテストステロン濃度は17 nM、17β-エストラジオール濃度は8 nMであった。精巣摘出した[[ラット]]を用い比較したところ、海馬内のテストステロンの8割は血中から供給され,2割は海馬内で合成されることが明らかとなった。一方、メスでは海馬の17β-エストラジオール(1 nM)は血中17β-エストラジオール(0.1~0.01 nM)より10倍以上も濃度が高く、また、メスでは血中から海馬に入る17β-エストラジオールの寄与は非常に低く,海馬内合成が主である。海馬における17β-エストラジオール量はオスの方がメスより8倍も多く、性腺や血中での量比とは逆転している。これらの知見から、テストステロンは[[血液脳関門]]を透過する一方、17β-エストラジオールの血液脳関門透過性は低いと考えられる。なお、脳においてニューロンおよびアストロサイトが主に17β-エストラジオールを合成すると考えてられており、[[オリゴデンドロサイト]]や[[ミクログリア]]などの細胞種の17β-エストラジオール合成への寄与は小さい<ref name=Brann2022><pubmed>36552208</pubmed></ref>。
 脳はエストロゲンを合成する一方、末梢で合成されたエストロゲンが脳に供給され得る。このような生体におけるエストロゲン、およびエストロゲン合成の基質であるテストステロンの動態は、川戸らの研究グループによって研究されている<ref name=Hojo2009><pubmed>19589866</pubmed></ref>。オスラットの海馬におけるテストステロン濃度は17 nM、17β-エストラジオール濃度は8 nMであった。精巣摘出した[[ラット]]を用い比較したところ、海馬内のテストステロンの8割は血中から供給され,2割は海馬内で合成されることが明らかとなった。一方、メスでは海馬の17β-エストラジオール(1 nM)は血中17β-エストラジオール(0.1~0.01 nM)より10倍以上も濃度が高く、また、メスでは血中から海馬に入る17β-エストラジオールの寄与は非常に低く,海馬内合成が主である。海馬における17β-エストラジオール量はオスの方がメスより8倍も多く、性腺や血中での量比とは逆転している。これらの知見から、テストステロンは[[血液脳関門]]を透過する一方、17β-エストラジオールの血液脳関門透過性は低いと考えられる。なお、脳においてニューロンおよびアストロサイトが主に17β-エストラジオールを合成すると考えてられており、[[オリゴデンドロサイト]]や[[ミクログリア]]などの細胞種の17β-エストラジオール合成への寄与は小さい<ref name=Brann2022><pubmed>36552208</pubmed></ref>。
== 受容体 ==
== 受容体 ==
 ヒトおよびマウスにおけるエストロゲン受容体 (estrogen receptor; ER)として、核内受容体型の[[ER&alpha]];と[[ER&beta;]]、ならびに[[Gタンパク質共役受容体]][[GPR30[[ ([[G protein-coupled receptor 30]])が知られている。これらの受容体は卵巣や子宮といった生殖器官に加えて脳、心臓および肝臓など様々な組織に発現している。脳では、ニューロン、アストロサイト、ミクログリア、オリゴデンドロサイトなど、ほぼすべての細胞種で発現が認められている。
 ヒトおよびマウスにおけるエストロゲン受容体 (estrogen receptor; ER)として、核内受容体型の[[ER&alpha;]]と[[ER&beta;]]、ならびに[[Gタンパク質共役受容体]][[GPR30]] ([[G protein-coupled receptor 30]])が知られている。これらの受容体は卵巣や子宮といった生殖器官に加えて脳、心臓および肝臓など様々な組織に発現している。脳では、ニューロン、アストロサイト、ミクログリア、オリゴデンドロサイトなど、ほぼすべての細胞種で発現が認められている。
[[ファイル:Ishihara Estrogen Fig2.png|サムネイル|'''図4. ERα、ERβの1次構造'''<br>文献<ref name=Muramatsu2000><pubmed>10733896</pubmed></ref>より引用。]]
[[ファイル:Ishihara Estrogen Fig2.png|サムネイル|'''図4. ERα、ERβの1次構造'''<br>文献<ref name=Muramatsu2000><pubmed>10733896</pubmed></ref>より引用。]]


=== 核内受容体ER ===
=== 核内受容体ER ===
 核内受容体のER&alpha;とER&beta;は細胞内に局在している。細胞内のエストロゲンがERに結合すると、ERはホモ二量体(&alpha;&alpha;, &beta;&beta;)あるいはヘテロ二量体(&alpha;&beta;)を形成して活性化する。活性化したER二量体はZnフィンガーモチーフを介してDNAに結合して遺伝子の転写を促進する('''図4''')。ERが認識する主なDNA配列はGGTCAnnnTGACCであり、[[エストロゲン応答エレメント]] (estrogen response element; ERE)と呼ばれる。ERの標的遺伝子には[[サイクリンD1]] ([[CCND1]])や[[トレフォイル因子1]] ([[trefoil factor 1]]; [[TFF1]])、[[核内受容体相互作用タンパク質1]] ([[nuclear receptor interacting protein 1]]; [[NRIP1]])、[[growth regulation by estrogen in breast cancer 1]] ([[GREB1]])などが存在する<ref name=Eeckhoute2006><pubmed>16980581</pubmed></ref><ref name=Lin2004><pubmed>15345050</pubmed></ref>。CCND1は広く細胞の増殖を促進し、TFF1は乳がん細胞の浸潤<ref name=Prest2002><pubmed>11919164</pubmed></ref>、NRIP1は乳腺の発達<ref name=Lapierre2015><pubmed>26116758</pubmed></ref>、GREB1は乳がん細胞の増殖に関わる<ref name=Hodgkinson2018><pubmed>29973689</pubmed></ref>。エストロゲンは[[骨代謝]]にも重要であり、骨代謝過程においてエストロゲン依存的な制御を受けるタンパク質群も同定されている<ref name=Pastorelli2005><pubmed>16237733</pubmed></ref>。また、ERはSERMやNCoRをリクルートして転写のリプレッサーとしても機能することが報告されている<ref name=Huang2002><pubmed>12145334</pubmed></ref><ref name=Shang2000><pubmed>11136970</pubmed></ref>。
 核内受容体のER&alpha;とER&beta;は細胞内に局在している。細胞内のエストロゲンがERに結合すると、ERはホモ二量体(&alpha;&alpha;, &beta;&beta;)あるいはヘテロ二量体(&alpha;&beta;)を形成して活性化する。活性化したER二量体はZnフィンガーモチーフを介してDNAに結合して遺伝子の転写を促進する('''図4''')。ERが認識する主なDNA配列はGGTCAnnnTGACCであり、[[エストロゲン応答エレメント]] (estrogen response element; ERE)と呼ばれる。ERの標的遺伝子には[[サイクリンD1]] ([[CCND1]])や[[トレフォイル因子1]] ([[trefoil factor 1]]; [[TFF1]])、[[核内受容体相互作用タンパク質1]] ([[nuclear receptor interacting protein 1]]; [[NRIP1]])、[[growth regulation by estrogen in breast cancer 1]] ([[GREB1]])などが存在する<ref name=Eeckhoute2006><pubmed>16980581</pubmed></ref><ref name=Lin2004><pubmed>15345050</pubmed></ref>。CCND1は広く細胞の増殖を促進し、TFF1は乳がん細胞の浸潤<ref name=Prest2002><pubmed>11919164</pubmed></ref>、NRIP1は乳腺の発達<ref name=Lapierre2015><pubmed>26116758</pubmed></ref>、GREB1は乳がん細胞の増殖に関わる<ref name=Hodgkinson2018><pubmed>29973689</pubmed></ref>。エストロゲンは[[骨代謝]]にも重要であり、骨代謝過程においてエストロゲン依存的な制御を受けるタンパク質群も同定されている<ref name=Pastorelli2005><pubmed>16237733</pubmed></ref>。また、ERは[[silencing mediator of retinoid and thyroid receptors]] ([[SMRT]])や[[核内受容体コリプレッサー]] ([[nuclear receptor corepressor]]; [[NCoR]])をリクルートして転写のリプレッサーとしても機能することが報告されている<ref name=Huang2002><pubmed>12145334</pubmed></ref><ref name=Shang2000><pubmed>11136970</pubmed></ref>。


 EREを介したER依存的な経路が[[古典的経路]] ([[classical pathway]])と称される一方で、[[非古典的経路]] ([[non-classical pathway]])もいくつか報告されている。[[セカンドメッセンジャー]]を介したリガンド非依存的なERの活性化や膜に局在するERを介したシグナル伝達、ERと他の[[転写因子]]、例えば、[[活性化タンパク質1]] ([[activator protein 1]]([[AP-1]])や[[specificity protein 1]] ([[Sp1]])、[[核内因子&kappa;B]] ([[nuclear factor-&kappa;B]]; [[NF-&kappa;B]])との相互作用を介して、ERE非依存的に遺伝子発現を制御する経路が示されている<ref name=McDevitt2008><pubmed>18534740</pubmed></ref>。
 EREを介したER依存的な経路が[[古典的経路]] ([[classical pathway]])と称される一方で、[[非古典的経路]] ([[non-classical pathway]])もいくつか報告されている。[[セカンドメッセンジャー]]を介したリガンド非依存的なERの活性化や膜に局在するERを介したシグナル伝達、ERと他の[[転写因子]]、例えば、[[活性化タンパク質1]] ([[activator protein 1]]; [[AP-1]])や[[specificity protein 1]] ([[Sp1]])、[[核内因子&kappa;B]] ([[nuclear factor-&kappa;B]]; [[NF-&kappa;B]])との相互作用を介して、ERE非依存的に遺伝子発現を制御する経路が示されている<ref name=McDevitt2008><pubmed>18534740</pubmed></ref>。


=== Gタンパク質共役受容体GPR30 ===
=== Gタンパク質共役受容体GPR30 ===
 Gタンパク質共役受容体であるGPR30は細胞膜に局在し、17β-エストラジオールに対して高い親和性を示す。17β-エストラジオールに結合したGPR30はcAMPやERKを介した細胞内情報伝達を制御することが示されている<ref name=Filardo2000><pubmed>11043579</pubmed></ref><ref name=Maggiolini2010><pubmed>19767412</pubmed></ref>。
 Gタンパク質共役受容体であるGPR30は[[細胞膜]]に局在し、17β-エストラジオールに対して高い親和性を示す。17β-エストラジオールに結合したGPR30は[[環状アデノシン一リン酸]] ([[cyclic adenosine monophosphate]]; [[cAMP]])や[[細胞外シグナル調節キナーゼ]] ([[extracellular signal-regulated kinase]]; [[ERK]])を介した[[細胞内情報伝達]]を制御することが示されている<ref name=Filardo2000><pubmed>11043579</pubmed></ref><ref name=Maggiolini2010><pubmed>19767412</pubmed></ref>。


== ニューロステロイドとしてのエストロゲンの機能 ==
== ニューロステロイドとしての機能 ==
=== 脳の性差と性行動 ===
=== 脳の性差と性行動 ===
 産まれてすぐに去勢したラットにエストロゲンを投与すると、雄の性行動が誘導される一方で、ゴナドトロピンの分泌と雌の性行動が抑制されることが示された<ref name=Booth1977><pubmed>845532</pubmed></ref>。この知見から、脳の性分化が、精巣由来のアンドロゲンが脳内でエストロゲンへ変換されることによって起こることが示唆された。シトクロムP450アロマターゼは性的二型核で高度に発現しており<ref name=Sasano1998><pubmed>9578823</pubmed></ref><ref name=Selmanoff1977><pubmed>891467</pubmed></ref>、これら脳領域でテストステロンをエストロゲンに変換することによって、男性化や男性特有の性行動に寄与すると考えられている<ref name=McCarthy2008><pubmed>18195084</pubmed></ref>。しかし、このメカニズムは鳥類やげっ歯類の研究結果を基に提唱されたものであり、ヒトや霊長類に拡張できるかについてはまだ議論がある。
 産まれてすぐに去勢した[[ラット]]にエストロゲンを投与すると、雄の[[性行動]]が誘導される一方で、ゴナドトロピンの分泌と雌の性行動が抑制されることが示された<ref name=Booth1977><pubmed>845532</pubmed></ref>。この知見から、脳の性分化が、精巣由来のアンドロゲンが脳内でエストロゲンへ変換されることによって起こることが示唆された。シトクロムP450アロマターゼは[[性的二型核]]で高度に発現しており<ref name=Sasano1998><pubmed>9578823</pubmed></ref><ref name=Selmanoff1977><pubmed>891467</pubmed></ref>、これら脳領域でテストステロンをエストロゲンに変換することによって、男性化や男性特有の性行動に寄与すると考えられている<ref name=McCarthy2008><pubmed>18195084</pubmed></ref>。しかし、このメカニズムは[[鳥類]]や[[げっ歯類]]の研究結果を基に提唱されたものであり、[[ヒト]]などの[[霊長類]]に拡張できるかについてはまだ議論がある。


=== シナプスの構造と機能 ===
=== シナプスの構造と機能 ===
 17β-エストラジオールは、シナプスの構造や機能の調節において重要な役割を果たしていると考えられている。Runeらの研究グループは、in vitroで培養したラット海馬切片をシトクロムP450アロマターゼ阻害薬であるレトロゾールで処置して17β-エストラジオールを減少させると、スパインやシナプスの密度が減少し、シナプス前タンパク質シナプトフィジンとシナプス後タンパク質スピノフィリンの発現が低下することを示した<ref name=Kretz2004><pubmed>15229239</pubmed></ref>。レトロゾール処置によるシナプトフィジンとスピノフィリンの減少は、メスマウスの海馬においても観察されている<ref name=Zhou2010><pubmed>20097718</pubmed></ref>。
 17β-エストラジオールは、[[シナプス]]の構造や機能の調節において重要な役割を果たしていると考えられている。Runeらの研究グループは、in vitroで培養したラット[[海馬]][[切片]]をシトクロムP450アロマターゼ[[阻害薬]]である[[レトロゾール]]で処置して17β-エストラジオールを減少させると、[[スパイン]]やシナプスの密度が減少し、シナプス前タンパク質[[シナプトフィジン]]とシナプス後タンパク質[[スピノフィリン]]の発現が低下することを示した<ref name=Kretz2004><pubmed>15229239</pubmed></ref>。レトロゾール処置によるシナプトフィジンとスピノフィリンの減少は、メスマウスの海馬においても観察されている<ref name=Zhou2010><pubmed>20097718</pubmed></ref>。


 また、17β-エストラジオールと長期増強(LTP)との関連も報告されている。雄ラットの海馬スライスにレトロゾールを処置すると、海馬CA1領域のLTPの振幅が60%減少する一方、ベースラインには影響しない<ref name=Grassi2011><pubmed>21749911</pubmed></ref>。レトロゾールは、脳内でテストステロンを増加させる可能性があるが、Tozziらは、アンドロゲン受容体阻害薬が雄ラットから調製した海馬切片のLTPに影響を及ぼさないことを示している<ref name=Tozzi2019><pubmed>31866827</pubmed></ref>。従って、17β-エストラジオールは海馬CA1錐体細胞層に作用して、LTPに影響すると考えられる。
 また、17β-エストラジオールと[[長期増強]]([[LTP]])との関連も報告されている。雄ラットの海馬スライスにレトロゾールを処置すると、海馬[[CA1]]領域のLTPの振幅が60%減少する一方、ベースラインには影響しない<ref name=Grassi2011><pubmed>21749911</pubmed></ref>。レトロゾールは、脳内でテストステロンを増加させる可能性があるが、Tozziらは、アンドロゲン受容体阻害薬が雄ラットから調製した海馬切片のLTPに影響を及ぼさないことを示している<ref name=Tozzi2019><pubmed>31866827</pubmed></ref>。従って、17β-エストラジオールは海馬CA1錐体細胞層に作用して、LTPに影響すると考えられる。


 遺伝子発現変化を伴わないnon-genomic signaling pathwaysおよび遺伝子発現変化を伴うgenomic signaling pathwaysの双方が17β-エストラジオールによるシナプスの構造形成や機能の調節に関わっている。Non-genomic signaling pathwaysにおいて、AktシグナルやERKシグナルを中心としたリン酸化シグナルが主要なメカニズムであると考えられている<ref name=Levenga2017><pubmed>29173281</pubmed></ref><ref name=Mao2016><pubmed>26567109</pubmed></ref><ref name=Sweatt2001><pubmed>11145972</pubmed></ref>。一方、17β-エストラジオールはCREBの活性化を介してBDNFやPDS95の発現を増大させ、シナプス可塑性を調節することも示唆されている<ref name=Lu2019><pubmed>30728170</pubmed></ref>。
 遺伝子発現変化を伴わないnon-genomic signaling pathwaysおよび遺伝子発現変化を伴うgenomic signaling pathwaysの双方が17β-エストラジオールによるシナプスの構造形成や機能の調節に関わっている。Non-genomic signaling pathwaysにおいて、[[Ak strain transforming]] ([[Akt]])シグナル([[プロテインキナーゼB]])やERKシグナルを中心としたリン酸化シグナルが主要なメカニズムであると考えられている<ref name=Levenga2017><pubmed>29173281</pubmed></ref><ref name=Mao2016><pubmed>26567109</pubmed></ref><ref name=Sweatt2001><pubmed>11145972</pubmed></ref>。一方、17β-エストラジオールは[[サイクリックAMP応答配列結合タンパク質]] ([[cAMP responsive element binding protein]]; [[CREB]])の活性化を介して[[脳由来神経栄養因子]] ([[brain-derived neurotrophic factor]]; [[BDNF]])や[[PSD-95]]の発現を増大させ、[[シナプス可塑性]]を調節することも示唆されている<ref name=Lu2019><pubmed>30728170</pubmed></ref>。


=== 認知機能 ===
=== 認知機能 ===
 1996年、Lancet誌に、閉経後の女性にエストロゲンを投与すると、アルツハイマー病発症のリスクが低下するとの論文が掲載され、エストロゲンと認知機能との関連性がとりわけ注目される契機となった<ref name=Tang1996><pubmed>8709781</pubmed></ref>。また、乳がん患者におけるシトクロムP450アロマターゼ阻害剤治療に係る知見から、エストロゲンが言語および視覚学習/記憶、実行機能、処理速度に重要であることが示唆された<ref name=Bender2007><pubmed>17898668</pubmed></ref><ref name=Phillips2011><pubmed>21046229</pubmed></ref><ref name=Rocha-Cadman2012><pubmed>22677000</pubmed></ref><ref name=Underwood2018><pubmed>29264751</pubmed></ref>。また、シトクロムP450アロマターゼ阻害薬による記憶障害が可逆的であることも明らかとなった。げっ歯類を用いてより直接的な研究が実施されており、例えば、雄および雌のラットに 14日間レトロゾールを脳室内投与したところ、海馬17β-エストラジオール濃度が低下し、海馬錐体ニューロンの発火頻度が減少した。またこのとき、作業記憶と新規物体認識記憶にレトロゾール用量依存的な障害が生じた<ref name=Marbouti2020><pubmed>32882397</pubmed></ref>。同様に、雄および雌のマウスにレトロゾールを投与すると、空間記憶障害が生じた<ref name=Zhao2018><pubmed>29452160</pubmed></ref>。さらに、レトロゾール投与により記憶の固定が損なわれたマウスに外因的に E2を補充すると、記憶が回復する<ref name=Tuscher2016><pubmed>27178577</pubmed></ref>。これらの知見から、17β-エストラジオールは記憶や学習に役割を果たしていると考えらえている。
 1996年、Lancet誌に、閉経後の女性にエストロゲンを投与すると、[[アルツハイマー病]]発症のリスクが低下するとの論文が掲載され、エストロゲンと認知機能との関連性がとりわけ注目される契機となった<ref name=Tang1996><pubmed>8709781</pubmed></ref>。また、乳がん患者におけるシトクロムP450アロマターゼ阻害剤治療に係る知見から、エストロゲンが[[言語]]および[[視覚]][[学習]]/[[記憶]]、[[実行機能]]、処理速度に重要であることが示唆された<ref name=Bender2007><pubmed>17898668</pubmed></ref><ref name=Phillips2011><pubmed>21046229</pubmed></ref><ref name=Rocha-Cadman2012><pubmed>22677000</pubmed></ref><ref name=Underwood2018><pubmed>29264751</pubmed></ref>。また、シトクロムP450アロマターゼ阻害薬による記憶障害が可逆的であることも明らかとなった。げっ歯類を用いてより直接的な研究が実施されており、例えば、雄および雌のラットに 14日間レトロゾールを[[脳室]]内投与したところ、海馬17β-エストラジオール濃度が低下し、海馬[[錐体ニューロン]]の発火頻度が減少した。またこのとき、[[作業記憶]]と[[新規物体認識記憶]]にレトロゾール用量依存的な障害が生じた<ref name=Marbouti2020><pubmed>32882397</pubmed></ref>。同様に、雄および雌のマウスにレトロゾールを投与すると、[[空間記憶]]障害が生じた<ref name=Zhao2018><pubmed>29452160</pubmed></ref>。さらに、レトロゾール投与により記憶の固定が損なわれたマウスに外因的にE2を補充すると、記憶が回復する<ref name=Tuscher2016><pubmed>27178577</pubmed></ref>。これらの知見から、17β-エストラジオールは記憶や学習に役割を果たしていると考えらえている。
[[ファイル:Ishihara Estrogen Fig4.png|サムネイル|'''図4. エストロゲンによる神経保護メカニズムの概要'''<br>文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>を改変]]
[[ファイル:Ishihara Estrogen Fig4.png|サムネイル|'''図4. エストロゲンによる神経保護メカニズムの概要'''<br>文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>を改変]]
=== 神経保護===
=== 神経保護===
 エストロゲンは、アルツハイマー病やパーキンソン病、脳梗塞など、様々な要因により生じる神経障害に対して保護作用を有していることが知られている<ref name=Brann2007><pubmed>17379265</pubmed></ref>。17β-エストラジオールによる神経保護メカニズムの概要を'''図5'''に示した。エストロゲンの神経保護メカニズムはgenomic signaling pathwaysとnon-genomic signaling pathwaysに大別される。
 エストロゲンは、アルツハイマー病や[[パーキンソン病]]、[[脳梗塞]]など、様々な要因により生じる神経障害に対して保護作用を有していることが知られている<ref name=Brann2007><pubmed>17379265</pubmed></ref>。17β-エストラジオールによる神経保護メカニズムの概要を'''図5'''に示した。エストロゲンの神経保護メカニズムはgenomic signaling pathwaysとnon-genomic signaling pathwaysに大別される。


 Genomic signaling pathways('''図5①''')に関与する、17β-エストラジオールによる神経保護を媒介する遺伝子群について'''表1'''に示した。17β-エストラジオールは酸化ストレスやアポトーシス、炎症に関連する遺伝子の発現を制御することにより神経保護作用を示す。
 Genomic signaling pathways('''図5①''')に関与する、17β-エストラジオールによる神経保護を媒介する遺伝子群について'''表1'''に示した。17β-エストラジオールは[[酸化ストレス]]や[[アポトーシス]]、[[炎症]]に関連する遺伝子の発現を制御することにより神経保護作用を示す。


 17β-エストラジオールによるnon-genomic signaling pathwaysを介した神経保護には、主にキナーゼ経路が関わると考えられている('''図5②''')。ERK経路の活性化や<ref name=Mize2003><pubmed>12488359</pubmed></ref>Akt経路の活性化<ref name=Zhang2009><pubmed>19889994</pubmed></ref>、Wntシグナル伝達の調節<ref name=Quintanilla2005><pubmed>15659394</pubmed></ref>などがメカニズムである。
 17β-エストラジオールによるnon-genomic signaling pathwaysを介した神経保護には、主にキナーゼ経路が関わると考えられている('''図5②''')。ERK経路の活性化や<ref name=Mize2003><pubmed>12488359</pubmed></ref>Akt経路の活性化<ref name=Zhang2009><pubmed>19889994</pubmed></ref>、[[Wnt]]シグナル伝達の調節<ref name=Quintanilla2005><pubmed>15659394</pubmed></ref>などがメカニズムである。


 また、17β-エストラジオールはミトコンドリア効率の改善('''図5③''')<ref name=Jones2009><pubmed>18930048</pubmed></ref>や活性酸素種('''図5④''')などの高反応性化学物質の直接消去も行う<ref name=Behl1997><pubmed>9106616</pubmed></ref>。さらに、アストロサイトのグルタミン酸動態に干渉したり<ref name=Acaz-Fonseca2014><pubmed>24444786</pubmed></ref>('''図5⑤''')、ミクログリアの炎症反応を抑制したりと<ref name=Bruce-Keller2000><pubmed>11014219</pubmed></ref>('''図5⑥''')、多種多様なメカニズムにより神経保護に役割を果たす。
 また、17β-エストラジオールは[[ミトコンドリア]]効率の改善('''図5③''')<ref name=Jones2009><pubmed>18930048</pubmed></ref>や[[活性酸素]]種('''図5④''')などの高反応性化学物質の直接消去も行う<ref name=Behl1997><pubmed>9106616</pubmed></ref>。さらに、[[アストロサイト]]の[[グルタミン酸]]動態に干渉したり<ref name=Acaz-Fonseca2014><pubmed>24444786</pubmed></ref>('''図5⑤''')、ミクログリアの炎症反応を抑制したりと<ref name=Bruce-Keller2000><pubmed>11014219</pubmed></ref>('''図5⑥''')、多種多様なメカニズムにより神経保護に役割を果たす。


{| class="wikitable"
{| class="wikitable"
78行目: 78行目:
! 標的遺伝子(発現変化) !! 作用
! 標的遺伝子(発現変化) !! 作用
|-
|-
| スーパーオキシドジスムターゼ1 (SOD1) (↑) || 活性酸素種の除去
| [[スーパーオキシドジスムターゼ1]] ([[SOD1]]) (↑) || 活性酸素種の除去
|-
|-
| スーパーオキシドジスムターゼ2 (SOD2)(↑) || 活性酸素種の除去
| [[スーパーオキシドジスムターゼ2]] ([[SOD2]])(↑) || 活性酸素種の除去
|-
|-
| グルタチオンペルオキシダーゼ (GPx) (↑) || 活性酸素種の除去
| [[グルタチオンペルオキシダーゼ]] ([[GPx]]) (↑) || 活性酸素種の除去
|-
|-
| カタラーゼ (↑) || 活性酸素種の除去
| [[カタラーゼ]] (↑) || 活性酸素種の除去
|-
|-
| 誘導型一酸化窒素合成酵素 (iNOS) (↓) || 反応性ラジカルの減少
| [[誘導型一酸化窒素合成酵素]] ([[iNOS]]) (↓) || 反応性ラジカルの減少
|-
|-
| 神経型一酸化窒素合成酵素 (nNOS) (↓) || 反応性ラジカルの減少
| [[神経型一酸化窒素合成酵素]] ([[nNOS]]) (↓) || 反応性ラジカルの減少
|-
|-
| グルタチオン-S-トランスフェラーゼ (GST) (↑) || 活性酸素種由来反応性代謝物の除去
| [[グルタチオン-S-トランスフェラーゼ]] ([[GST]]) (↑) || 活性酸素種由来反応性代謝物の除去
|-
|-
| NAD(P)Hキノンオキシドレダクターゼ1 (NQO1) (↑) || 活性酸素種由来反応性代謝物の除去
| [[NAD(P)Hキノンオキシドレダクターゼ1]] ([[NQO1]]) (↑) || 活性酸素種由来反応性代謝物の除去
|-
|-
| セラジン-1 (↑) || 抗アポトーシス
| [[セラジン-1]] (↑) || 抗アポトーシス
|-
|-
| ニューログロブリン (↑) || 抗アポトーシス、抗炎症
| [[ニューログロブリン]] (↑) || 抗アポトーシス、抗炎症
|-
|-
| インターロイキン-6 (↓) || 抗炎症
| [[インターロイキン-6]] (↓) || 抗炎症
|-
|-
| インターフェロンガンマ誘導性タンパク質10 (IP-10 )(↓) || 抗炎症
| [[インターフェロンガンマ誘導性タンパク質10]] ([[IP-10]] )(↓) || 抗炎症
|-
|-
| マトリックスメタロプロテイナーゼ-9 (MMP-9) (↓) || 抗炎症
| [[マトリックスメタロプロテイナーゼ-9]] ([[MMP-9]]) (↓) || 抗炎症
|-
|-
| シトクロムc酸化酵素 (↑) || ミトコンドリア効率の増大
| [[シトクロムc酸化酵素]] (↑) || ミトコンドリア効率の増大
|-
|-
| Bax(↓) || 抗アポトーシス
| [[Bax]](↓) || 抗アポトーシス
|}
|}
文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>より引用
文献<ref name=Ishihara2015><pubmed>25815107</pubmed></ref>より引用

ナビゲーション メニュー